Modeling and Simulation of Biologically Inspired Flow Field Designs for Proton Exchange Membrane Fuel Cells

128007-Thumbnail Image.png
Description

Various biologically inspired flow field designs of the gas distributor (interconnector) have been designed and simulated. Their performance using Nafion-212 with humidified H2 and Air at 80 °C with the ANSYS Fluent Fuel Cell module software was evaluated. Novel interdigitated

Various biologically inspired flow field designs of the gas distributor (interconnector) have been designed and simulated. Their performance using Nafion-212 with humidified H2 and Air at 80 °C with the ANSYS Fluent Fuel Cell module software was evaluated. Novel interdigitated designs were optimized by obeying biologically inspired branching rules. These rules allow for more mathematically formal descriptions of flow field designs, enabling relatively simple optimization. The channel to land ratio was kept equivalent between designs with typical values between 0.8 and 1.0. The pressure drop and the current density distribution were monitored for each design on both anode and cathode sides. The most promising designs are expected to exhibit lower pressure drop however, low pressure drop can also be an indication of potential water flooding at higher operating current density. A biologically inspired interdigitated design with 9 inlet channels exhibited reduced pressure drop and improved current density distribution compared to all other interdigitated designs evaluated in this study. The simulated fuel cell performance data at ambient pressure with humidified H2 and air compares well with the experimental data using a single serpentine flow field design.

Date Created
2015
Agent

Proton exchange membrane fuel cell modeling and simulation using Ansys Fluent

149660-Thumbnail Image.png
Description
Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick

Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several important limitations which must be overcome before commercial viability can be achieved. Active areas of research into making them commercially viable include reducing the cost, size and weight of fuel cells while also increasing their durability and performance. A growing and important part of this research involves the computer modeling of fuel cells. High quality computer modeling and simulation of fuel cells can help speed up the discovery of optimized fuel cell components. Computer modeling can also help improve fundamental understanding of the mechanisms and reactions that take place within the fuel cell. The work presented in this thesis describes a procedure for utilizing computer modeling to create high quality fuel cell simulations using Ansys Fluent 12.1. Methods for creating computer aided design (CAD) models of fuel cells are discussed. Detailed simulation parameters are described and emphasis is placed on establishing convergence criteria which are essential for producing consistent results. A mesh sensitivity study of the catalyst and membrane layers is presented showing the importance of adhering to strictly defined convergence criteria. A study of iteration sensitivity of the simulation at low and high current densities is performed which demonstrates the variance in the rate of convergence and the absolute difference between solution values derived at low numbers of iterations and high numbers of iterations.
Date Created
2011
Agent