One of the salient challenges of sustainability is the Tragedy of the Commons, where individuals acting independently and rationally deplete a common resource despite their understanding that it is not in the group's long term best interest to do so.…
One of the salient challenges of sustainability is the Tragedy of the Commons, where individuals acting independently and rationally deplete a common resource despite their understanding that it is not in the group's long term best interest to do so. Hardin presents this dilemma as nearly intractable and solvable only by drastic, government-mandated social reforms, while Ostrom's empirical work demonstrates that community-scale collaboration can circumvent tragedy without any elaborate outside intervention. Though more optimistic, Ostrom's work provides scant insight into larger-scale dilemmas such as climate change. Consequently, it remains unclear if the sustainable management of global resources is possible without significant government mediation. To investigate, we conducted two game theoretic experiments that challenged students in different countries to collaborate digitally and manage a hypothetical common resource. One experiment involved students attending Arizona State University and the Rochester Institute of Technology in the US and Mountains of the Moon University in Uganda, while the other included students at Arizona State and the Management Development Institute in India. In both experiments, students were randomly assigned to one of three production roles: Luxury, Intermediate, and Subsistence. Students then made individual decisions about how many units of goods they wished to produce up to a set maximum per production class. Luxury players gain the most profit (i.e. grade points) per unit produced, but they also emit the most externalities, or social costs, which directly subtract from the profit of everybody else in the game; Intermediate players produce a medium amount of profit and externalities per unit, and Subsistence players produce a low amount of profit and externalities per unit. Variables influencing and/or inhibiting collaboration were studied using pre- and post-game surveys. This research sought to answer three questions: 1) Are international groups capable of self-organizing in a way that promotes sustainable resource management?, 2) What are the key factors that inhibit or foster collective action among international groups?, and 3) How well do Hardin's theories and Ostrom's empirical models predict the observed behavior of students in the game? The results of gameplay suggest that international cooperation is possible, though likely sub-optimal. Statistical analysis of survey data revealed that heterogeneity and levels of trust significantly influenced game behavior. Specific traits of heterogeneity among students found to be significant were income, education, assigned production role, number of people in one's household, college class, college major, and military service. Additionally, it was found that Ostrom's collective action framework was a better predictor of game outcome than Hardin's theories. Overall, this research lends credence to the plausibility of international cooperation in tragedy of the commons scenarios such as climate change, though much work remains to be done.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This paper features analysis of interdisciplinary collaboration, based on the results from the Kolbe A™ Index of students in the Nano Ethics at Play (NEAP) class, a four week course in Spring 2015. The Kolbe A™ is a system…
This paper features analysis of interdisciplinary collaboration, based on the results from the Kolbe A™ Index of students in the Nano Ethics at Play (NEAP) class, a four week course in Spring 2015. The Kolbe A™ is a system which describes the Conative Strengths of each student, or their natural drive and instinct. NEAP utilized the LEGO® SERIOUS PLAY® (LSP) method, which uses abstract LEGO models to describe answers to a proposed question in school or work environments. The models could be described piece by piece to provide clear explanations without allowing disciplinary jargon, which is why the class contained students from eleven different majors (Engineering (Civil, Biomedical, & Electrical), Business (Marketing & Supply Chain Management), Architectural Studies, Sustainability, Anthropology, Communications, Philosophy, & Psychology).
The proposed hypotheses was based on the four different Kolbe A™ strengths, or Action Modes: Fact Finder, Follow Through, Quick Start, and Implementor. Hypotheses were made about class participation and official class twitter use, using #ASUsp, for each Kolbe type. The results proved these hypotheses incorrect, indicating a lack of correlation between Kolbe A™ types and playing. The report also includes qualitative results such as Twitter Keywords and a Sentiment calculation for each week of the course. The class had many positive outcomes, including growth in the ability to collaborate by students, further understanding of how to integrate Twitter use into the classroom, and more knowledge about the effectiveness of LSP.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Background: Decision analysis—a systematic approach to solving complex problems—offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate…
Background: Decision analysis—a systematic approach to solving complex problems—offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals.
Objectives: We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics.
Methods: A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups’ findings.
Results: We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis.
Conclusions: We advance four recommendations: a) engaging the systematic development and evaluation of decision approaches and tools; b) using case studies to advance the integration of decision analysis into alternatives analysis; c) supporting transdisciplinary research; and d) supporting education and outreach efforts.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Resilient infrastructure research has produced a myriad of conflicting definitions and analytic frameworks, highlighting the difficulty of creating a foundational theory that informs disciplines as diverse as business, engineering, ecology, and disaster risk reduction. Nevertheless, there is growing agreement that…
Resilient infrastructure research has produced a myriad of conflicting definitions and analytic frameworks, highlighting the difficulty of creating a foundational theory that informs disciplines as diverse as business, engineering, ecology, and disaster risk reduction. Nevertheless, there is growing agreement that resilience is a desirable property for infrastructure systems – i.e., that more resilience is always better. Unfortunately, this view ignore that the fact that a single concept of resilience is insufficient to ensure effective performance under diverse and volatile stresses. Scholarship in resilience engineering has identified at least four irreducible resilience concepts, including: rebound, robustness, graceful extensibility, and sustained adaptability.
In this paper, we clarify the meaning of the word resilience and its use, explain the advantages of the pluralistic approach to advancing resilience theory, and clarify two of the four conceptual understandings: robustness and graceful extensibility. Furthermore, we draw upon examples in electric power, transportation, and water systems that illustrate positive and negative cases of resilience in infrastructure management and crisis response. The following conclusions result:
1. Robustness and graceful extensibility are different strategies for resilience that draw upon different system characteristics.
2. Neither robustness nor extensibility can prevent all hazards.
3. While systems can perform both strategies simultaneously, their drawbacks are different.
Robust infrastructure systems fail when policies and procedures become stale, or when faced with overwhelming surprise. Extensible systems fail when a lack of coordination or exhaustion of resources results from decompensation. Consequently, resilience is found neither only in robustness, nor only in extensibility, but in the capacity apply both and switch between them at will.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers…
We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events can emerge in a cascading manner on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme events and a state of full of extreme events, and the transition between them is abrupt. Our results indicate that internal interactions in the multiplex system can yield qualitatively distinct phenomena associated with extreme events that do not occur for independent network layers. An implication is that, e.g., public resource competitions among different service providers can lead to a higher resource requirement than naively expected. We derive an analytical theory to understand the emergence of global-scale extreme events based on the concept of effective betweenness. We also articulate a cost-effective control scheme through increasing the capacity of very few hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer infrastructure against global-scale breakdown.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not…
Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex coupled natural-human (CNH) systems that have nearby and distant teleconnections. Infrastructure systems—roads, electrical grids, pipelines, damns, and aqueducts, to name a few—have been built to convey and store these resources from their point of origin to their point of consumption. Traditional hard infrastructure systems are complemented by soft infrastructure, such as governance, legal, economic, and social systems, which rely upon the conveyance of information and currency rather than a physical commodity, creating teleconnections that link multiple CNH systems. The underlying structure of these systems allows for the creation of novel network methodologies to study the interdependencies, feedbacks, and timescales between direct and indirect resource consumers and producers; to identify potential vulnerabilities within the system; and to model the configuration of ideal system states. Direct and indirect water consumption provides an ideal indicator for such study because water risk is highly location-based in terms of geography, climate, economics, and cultural norms and is manifest at multiple geographic scales. Taken together, the CNH formed by economic trade and indirect water exchange networks create hydro-economic networks. Given the importance of hydro-economic networks for human well-being and economic production, this dissertation answers the overarching research question: What information do we gain from analyzing virtual water trade at the systems level rather than the component city level? Three studies are presented with case studies pertaining to the State of Arizona. The first derives a robust methodology to disaggregate indirect water flows to subcounty geographies. The second creates city-level metrics of hydro-economic vulnerability and functional diversity. The third analyzes the physical, legal, and economic allocation of a shared river basin to identify vulnerable nodes in river basin hydro-economic networks. This dissertation contributes to the literature through the creation of novel metrics to measure hydro-economic network properties and to generate insight into potential US hydro-economic shocks.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In the American Southwest, an area which already experiences a significant number of cooling degree days, anthropogenic climate change is expected to result in higher average temperatures and the increasing frequency, duration, and severity of heat waves. Climatological forecasts predict…
In the American Southwest, an area which already experiences a significant number of cooling degree days, anthropogenic climate change is expected to result in higher average temperatures and the increasing frequency, duration, and severity of heat waves. Climatological forecasts predict heat waves will increase by 150-840% in Los Angeles County, California and 340-1800% in Maricopa County, Arizona. Heat exposure is known to increase both morbidity and mortality and rising temperatures represent a threat to public health. As a result there has been a significant amount of research into understanding existing socio-economic vulnerabilities to extreme heat which has identified population subgroups at greater risk of adverse health outcomes. Additionally, research has shown that man-made infrastructure can mitigate or exacerbate these health risks. However, while recent socio-economic heat vulnerability research has developed geospatially explicit results, research which links it directly with infrastructure characteristics is limited. Understanding how socio-economic vulnerabilities interact with infrastructure systems is a critical component to developing climate adaptation policies and programs which efficiently and effectively mitigate health risks associated with rising temperatures.
The availability of cooled space, whether public or private, has been shown to greatly reduce health risks associated with extreme heat. However, a lack of fine-scale knowledge of which households have access to this infrastructure results in an incomplete understanding of the health risks associated with heat. This knowledge gap could result in the misallocation of resources intended to mitigate negative health impacts associated with heat exposure. Additionally, when discussing accessibility to public cooled space there are underlying questions of mobility and mode choice. In addition to captive riders, a growing emphasis on walking, biking and public transit will likely expose additional choice riders to extreme temperatures and compound existing vulnerabilities to heat.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Engineering ethics is preoccupied with technical failure. To ameliorate the risk that engineering works might either blow up or fall down, the engineering code of ethics provides guidance of how engineers should conduct themselves. For example, the Fundamental Canons in…
Engineering ethics is preoccupied with technical failure. To ameliorate the risk that engineering works might either blow up or fall down, the engineering code of ethics provides guidance of how engineers should conduct themselves. For example, the Fundamental Canons in the National Society of Professional Engineers code of ethics states that engineers should hold paramount the health, safety and welfare of the public. As a result, engineering designs meet basic human needs such as food, water and shelter -- at risks that are generally considered acceptable. However, even safe designs fail to meet our needs ranked higher in Maslow's hierarchy -- such as belonging, esteem and self-actualization. While these have historically not been ethical priorities, increasing expectations in developed countries now include more complex ethical concepts such as sustainability and social justice. We can expect these trends toward higher and more complex human needs to continue -- although the profession seems ill-prepared. We argue that an empathic approach to engineering design is necessary to meet these higher needs of developed and developing societies. To guide engineers towards this approach, we propose a pluralistic interpretation of empathy grounded in an understanding of the three parts of the mind: cognitive, affective, and conative. In fact, product designers already use empathy in their design processes. However, an exemplar of an empathic design is harder to find in civil engineering disciplines. This paper discusses an example of the Hoover Dam Bypass, which resulted in an award-winning design and construction that improved traffic flow, reduced vulnerability to terrorist attack, and accounted for historical factors and environmental impacts. However, this technical success is an empathic failure. Although project leaders commissioned ethnographic studies to understand the impact the bridge would have on the local Native American populations and their cultural sites, the eventual design showed little consideration of the concerns that were revealed. For engineering designs such as bridges, other infrastructure and systems to meet the needs of the various populations in which they serve, engineers need to incorporate empathy into their designs.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify…
Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. This dissertation focuses on development of anticipatory LCA tools that incorporate elements of technology forecasting, provide robust explorations of uncertainty, and engage diverse innovation actors in overcoming retrospective approaches to environmental assessment and improvement of emerging technologies. Chapter one contextualizes current LCA practices within the growing literature articulating RRI and identifies the optimal place in the stage gate innovation model to apply LCA. Chapter one concludes with a call to develop anticipatory LCA – building on the theory of anticipatory governance – as a series of methodological improvements that seek to align LCA practices with the objectives of RRI.
Chapter two provides a framework for anticipatory LCA, identifies where research from multiple disciplines informs LCA practice, and builds off the recommendations presented in the preceding chapter. Chapter two focuses on crystalline and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is an environmentally motivated technology undergoing extensive R&D efforts and rapid increases in scale of deployment. The chapter concludes with a series of research recommendations that seek to direct PV research agenda towards pathways with the greatest potential for environmental improvement.
Similar to PV, engineered nanomaterials (ENMs) are an emerging technology with numerous potential applications, are the subject of active R&D efforts, and are characterized by high uncertainty regarding potential environmental implications. Chapter three introduces a Monte Carlo impact assessment tool based on the toxicity impact assessment model USEtox and demonstrates stochastic characterization factor (CF) development to prioritize risk research with the greatest potential to improve certainty in CFs. The case study explores a hypothetical decision in which personal care product developers are interested in replacing the conventional antioxidant niacinamide with the novel ENM C60, but face high data uncertainty, are unsure regarding potential ecotoxicity impacts associated with this substitution, and do not know what future risk-relevant experiments to invest in that most efficiently improve certainty in the comparison. Results suggest experiments that elucidate C60 partitioning to suspended solids should be prioritized over parameters with little influence on results. This dissertation demonstrates a novel anticipatory approach to exploration of uncertainty in environmental models that can create new, actionable knowledge with potential to guide future research and development decisions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)