This project uses All of Us Data to analyze how well of a predictor APOE ε4 is in the Latinx community, a high grandparent care community. APOE is used as a predictor for Alzheimer’s disease, but it is unknown, due…
This project uses All of Us Data to analyze how well of a predictor APOE ε4 is in the Latinx community, a high grandparent care community. APOE is used as a predictor for Alzheimer’s disease, but it is unknown, due to the lack of studies, how strong of a predictor it will be for Latinx individuals. This project aims to understand if the increased risk of Alzheimer’s disease among Hispanics is associated with a different level of ε4 gene frequency.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The burden of dementia and its primary cause, Alzheimer’s disease, continue to devastate many with no available cure although present research has delivered methods for risk calculation and models of disease development that promote preventative strategies. Presently Alzheimer’s disease affects…
The burden of dementia and its primary cause, Alzheimer’s disease, continue to devastate many with no available cure although present research has delivered methods for risk calculation and models of disease development that promote preventative strategies. Presently Alzheimer’s disease affects 1 in 9 people aged 65 and older amounting to a total annual healthcare cost in 2023 in the United States of $345 billion between Alzheimer’s disease and other dementias making dementia one of the costliest conditions to society (“2023 Alzheimer’s Disease Facts and Figures,” 2023). This substantial cost can be dramatically lowered in addition to a reduction in the overall burden of dementia through the help of risk prediction models, but there is still a need for models to deliver an individual’s predicted time of onset that supplements risk prediction in hopes of improving preventative care. The aim of this study is to develop a model used to predict the age of onset for all-cause dementias and Alzheimer’s disease using demographic, comorbidity, and genetic data from a cohort sample. This study creates multiple regression models with methods of ordinary least squares (OLS) and least absolute shrinkage and selection operator (LASSO) regression methods to understand the capacity of predictor variables that estimate age of onset for all-cause dementia and Alzheimer’s disease. This study is unique in its use of a diverse cohort containing 346 participants to create a predictive model that originates from the All of Us Research Program database and seeks to represent an accurate sampling of the United States population. The regression models generated had no predictive capacity for the age of onset but outline a simplified approach for integrating public health data into a predictive model. The results from the generated models suggest a need for continued research linking risk factors that estimate time of onset.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A significant amount of prior research has been conducted to investigate type 2 diabetes, the most prevalent form afflicting over 90% of diabetic individuals [6]. Yet, gestational diabetes is an understudied form of diabetes that is thought to share various…
A significant amount of prior research has been conducted to investigate type 2 diabetes, the most prevalent form afflicting over 90% of diabetic individuals [6]. Yet, gestational diabetes is an understudied form of diabetes that is thought to share various attributes with type 2 diabetes. It was the aim of this project to investigate a proposed mechanism of the disease, the contra-insulin effect, through a cell-culture experiment. To address the question of whether glycemic and hormonal conditions of cell-culture media affect Hs 795.Pl morphology, cellular growth, and glucose uptake, immunocytochemistry (ICC) and a glucose uptake assay was performed. It was hypothesized that higher the presence of hormones, specifically lactogen, in cell culture media will exacerbate the contra-insulin effect, decreasing the glucose uptake of the Hs 795.Pl cells and inducing abhorrent cell morphology. Qualitatively, estradiol and cortisol had a severe impact on cellular morphology indicative of stress and death. As for glucose uptake, it was decreased when the hormones were isolated compared to all together with estradiol thought to be majorly inhibitory to insulin’s proper functioning. It was concluded that cell morphology, growth, and glucose uptake were detrimentally impacted by the gestational hormones, especially those of cortisol and estrogen.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A significant amount of prior research has been conducted to investigate type 2 diabetes, the most prevalent form afflicting over 90% of diabetic individuals [6]. Yet, gestational diabetes is an understudied form of diabetes that is thought to share various…
A significant amount of prior research has been conducted to investigate type 2 diabetes, the most prevalent form afflicting over 90% of diabetic individuals [6]. Yet, gestational diabetes is an understudied form of diabetes that is thought to share various attributes with type 2 diabetes. It was the aim of this project to investigate a proposed mechanism of the disease, the contra-insulin effect, through a cell-culture experiment. To address the question of whether glycemic and hormonal conditions of cell-culture media affect Hs 795.Pl morphology, cellular growth, and glucose uptake, immunocytochemistry (ICC) and a glucose uptake assay was performed. It was hypothesized that higher the presence of hormones, specifically lactogen, in cell culture media will exacerbate the contra-insulin effect, decreasing the glucose uptake of the Hs 795.Pl cells and inducing abhorrent cell morphology. Qualitatively, estradiol and cortisol had a severe impact on cellular morphology indicative of stress and death. As for glucose uptake, it was decreased when the hormones were isolated compared to all together with estradiol thought to be majorly inhibitory to insulin’s proper functioning. It was concluded that cell morphology, growth, and glucose uptake were detrimentally impacted by the gestational hormones, especially those of cortisol and estrogen.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Influenza virus A (IVA) poses a serious threat to human health, killing over 25,000 Americans in the 2022 flu season alone. In the past 10 years, vaccine efficacy has varied significantly, ranging from 20-60% each season. Because IVA is subject…
Influenza virus A (IVA) poses a serious threat to human health, killing over 25,000 Americans in the 2022 flu season alone. In the past 10 years, vaccine efficacy has varied significantly, ranging from 20-60% each season. Because IVA is subject to high antigenic shift and strain cocirculation, more effective IVA vaccines are needed to reduce the incidence of disease. Herein we report the production of a recombinant immune complex (RIC) vaccine “4xM2e” in Nicotiana benthamiana plants using agroinfiltration for use as a potential universal IVA vaccine candidate. RICs fuse antigen to the C-terminus of an immunoglobulin heavy chain with an epitope tag cognate to the antibody, promoting immune complex formation to increase immunogenicity. IVA matrix protein 2 ectodomain (M2e) is selected to serve as vaccine antigen for its high sequence conservation, as only a small number of minor mutations have occurred since its discovery in 1981 in the human sequence. However, there is some divergence in zoonotic IVA strains, and to account for this, we designed a combination of human consensus, swine, and avian M2e variants, 4xM2e. This was fused to the C terminus of the RIC platform to improve M2e immunogenicity and IVA strain coverage. The 4xM2e RIC was produced in N. benthamiana and verified with SDS-PAGE and Western blot assays, along with an analysis of complex formation and the potential for complement activation via complement C1q ELISA. With this work, we demonstrate the potential of RICs and plant-expression systems to generate universal IVA vaccine candidates.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Memory CD8+ T cells protect against secondary viral infections. They develop and maintain exclusively in circulation (e.g. central memory - Tcm) or are excluded from re-circulation (resident memory - Trm). The extracellular ATP receptor P2RX7 promotes both Tcm and Trm…
Memory CD8+ T cells protect against secondary viral infections. They develop and maintain exclusively in circulation (e.g. central memory - Tcm) or are excluded from re-circulation (resident memory - Trm). The extracellular ATP receptor P2RX7 promotes both Tcm and Trm generation. High (P2RX7hi) P2RX7-expressing early effector cells show survival, memory and pluripotency genes. Conversely, many terminal effector (TE) and apoptosis genes are upregulated in low (P2RX7lo) P2RX7-expressing cells. Among these genes is the zinc-finger transcriptional repressor Zeb2, which promotes TE differentiation at the expense of the memory cell pool. Given that Zeb2 was higher in P2RX7lo early effector cells, we postulated that Zeb2 ablation would allow P2RX7-deficient CD8+ T cells to skew towards memory subsets. To test this, we used RNP-based CRISPR-Cas9 to knockout Zeb2 in wild type or P2RX7-deficient P14 cells. At the memory timepoint, Zeb2 ablation led to a rescue of the ability of P2RX7-deficient cells to differentiate into the CD62L+ Tcm and CD69hiCD103hi Trm subsets, as well as increase the population of each. Our data suggest that P2RX7 imprints a pro-memory signature that is, to some extent, dependent on the negative regulation of Zeb2.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the…
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment. Keywords: Type II Diabetes mellitus, Gene Set Enrichment Analysis, genetic variants, KEGG Insulin Pathway, gene-regulatory pathway
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the…
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)