Bayesian Spatiotemporal Modeling and Uncertainty Quantification

190731-Thumbnail Image.png
Description
Uncertainty Quantification (UQ) is crucial in assessing the reliability of predictivemodels that make decisions for human experts in a data-rich world. The Bayesian approach to UQ for inverse problems has gained popularity. However, addressing UQ in high-dimensional inverse problems is

Uncertainty Quantification (UQ) is crucial in assessing the reliability of predictivemodels that make decisions for human experts in a data-rich world. The Bayesian approach to UQ for inverse problems has gained popularity. However, addressing UQ in high-dimensional inverse problems is challenging due to the intensity and inefficiency of Markov Chain Monte Carlo (MCMC) based Bayesian inference methods. Consequently, the first primary focus of this thesis is enhancing efficiency and scalability for UQ in inverse problems. On the other hand, the omnipresence of spatiotemporal data, particularly in areas like traffic analysis, underscores the need for effectively addressing inverse problems with spatiotemporal observations. Conventional solutions often overlook spatial or temporal correlations, resulting in underutilization of spatiotemporal interactions for parameter learning. Appropriately modeling spatiotemporal observations in inverse problems thus forms another pivotal research avenue. In terms of UQ methodologies, the calibration-emulation-sampling (CES) scheme has emerged as effective for large-dimensional problems. I introduce a novel CES approach by employing deep neural network (DNN) models during the emulation and sampling phase. This approach not only enhances computational efficiency but also diminishes sensitivity to training set variations. The newly devised “Dimension- Reduced Emulative Autoencoder Monte Carlo (DREAM)” algorithm scales Bayesian UQ up to thousands of dimensions in physics-constrained inverse problems. The algorithm’s effectiveness is exemplified through elliptic and advection-diffusion inverse problems. In the realm of spatiotemporal modeling, I propose to use Spatiotemporal Gaussian processes (STGP) in likelihood modeling and Spatiotemporal Besov processes (STBP) in prior modeling separately. These approaches highlight the efficacy of incorporat- ing spatial and temporal information for enhanced parameter estimation and UQ. Additionally, the superiority of STGP is demonstrated compared to static and time- averaged methods in time-dependent advection-diffusion partial differential equation (PDE) and three chaotic ordinary differential equations (ODE). Expanding upon Besov Process (BP), a method known for sparsity-promotion and edge-preservation, STBP is introduced to capture spatial data features and model temporal correlations by replacing the random coefficients in the series expansion with stochastic time functions following Q-exponential process(Q-EP). This advantage is showcased in dynamic computerized tomography (CT) reconstructions through comparison with classic STGP and a time-uncorrelated approach.
Date Created
2023
Agent

Multiple Testing of Local Maxima for Detection of Peaks and Change Points with Non-stationary Noise

189356-Thumbnail Image.png
Description
This dissertation comprises two projects: (i) Multiple testing of local maxima for detection of peaks and change points with non-stationary noise, and (ii) Height distributions of critical points of smooth isotropic Gaussian fields: computations, simulations and asymptotics. The first project

This dissertation comprises two projects: (i) Multiple testing of local maxima for detection of peaks and change points with non-stationary noise, and (ii) Height distributions of critical points of smooth isotropic Gaussian fields: computations, simulations and asymptotics. The first project introduces a topological multiple testing method for one-dimensional domains to detect signals in the presence of non-stationary Gaussian noise. The approach involves conducting tests at local maxima based on two observation conditions: (i) the noise is smooth with unit variance and (ii) the noise is not smooth where kernel smoothing is applied to increase the signal-to-noise ratio (SNR). The smoothed signals are then standardized, which ensures that the variance of the new sequence's noise becomes one, making it possible to calculate $p$-values for all local maxima using random field theory. Assuming unimodal true signals with finite support and non-stationary Gaussian noise that can be repeatedly observed. The algorithm introduced in this work, demonstrates asymptotic strong control of the False Discovery Rate (FDR) and power consistency as the number of sequence repetitions and signal strength increase. Simulations indicate that FDR levels can also be controlled under non-asymptotic conditions with finite repetitions. The application of this algorithm to change point detection also guarantees FDR control and power consistency. The second project focuses on investigating the explicit and asymptotic height densities of critical points of smooth isotropic Gaussian random fields on both Euclidean space and spheres.The formulae are based on characterizing the distribution of the Hessian of the Gaussian field using the Gaussian orthogonally invariant (GOI) matrices and the Gaussian orthogonal ensemble (GOE) matrices, which are special cases of GOI matrices. However, as the dimension increases, calculating explicit formulae becomes computationally challenging. The project includes two simulation methods for these distributions. Additionally, asymptotic distributions are obtained by utilizing the asymptotic distribution of the eigenvalues (excluding the maximum eigenvalues) of the GOE matrix for large dimensions. However, when it comes to the maximum eigenvalue, the Tracy-Widom distribution is utilized. Simulation results demonstrate the close approximation between the asymptotic distribution and the real distribution when $N$ is sufficiently large.
Date Created
2023
Agent

Machine Learning and Causal Inference: Theory, Examples, and Computational Results

187808-Thumbnail Image.png
Description
This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review

This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth theoretical study. Next, various computational approaches to estimating causal effects with machine learning methods are compared with these theoretical desiderata in mind. Several improvements to current methods for causal machine learning are identified and compelling angles for further study are pinpointed. Finally, a common method used for “explaining” predictions of machine learning algorithms, SHAP, is evaluated critically through a statistical lens.
Date Created
2023
Agent

Machine Learning for the Design of Screening Tests: General Principles and Applications in Criminology and Digital Medicine

187769-Thumbnail Image.png
Description
This dissertation explores applications of machine learning methods in service of the design of screening tests, which are ubiquitous in applications from social work, to criminology, to healthcare. In the first part, a novel Bayesian decision theory framework is presented

This dissertation explores applications of machine learning methods in service of the design of screening tests, which are ubiquitous in applications from social work, to criminology, to healthcare. In the first part, a novel Bayesian decision theory framework is presented for designing tree-based adaptive tests. On an application to youth delinquency in Honduras, the method produces a 15-item instrument that is almost as accurate as a full-length 150+ item test. The framework includes specific considerations for the context in which the test will be administered, and provides uncertainty quantification around the trade-offs of shortening lengthy tests. In the second part, classification complexity is explored via theoretical and empirical results from statistical learning theory, information theory, and empirical data complexity measures. A simulation study that explicitly controls two key aspects of classification complexity is performed to relate the theoretical and empirical approaches. Throughout, a unified language and notation that formalizes classification complexity is developed; this same notation is used in subsequent chapters to discuss classification complexity in the context of a speech-based screening test. In the final part, the relative merits of task and feature engineering when designing a speech-based cognitive screening test are explored. Through an extensive classification analysis on a clinical speech dataset from patients with normal cognition and Alzheimer’s disease, the speech elicitation task is shown to have a large impact on test accuracy; carefully performed task and feature engineering are required for best results. A new framework for objectively quantifying speech elicitation tasks is introduced, and two methods are proposed for automatically extracting insights into the aspects of the speech elicitation task that are driving classification performance. The dissertation closes with recommendations for how to evaluate the obtained insights and use them to guide future design of speech-based screening tests.
Date Created
2023
Agent