Generalized Process Model for Solid Sorbent Direct Air Capture Contactors

190764-Thumbnail Image.png
Description
Global emissions of carbon dioxide are reaching new heights every year since the Industrial Revolution. A major contributor to this is fossil fuel consumption. The consumption trend has indicated all this. It has also strengthened the argument for the need

Global emissions of carbon dioxide are reaching new heights every year since the Industrial Revolution. A major contributor to this is fossil fuel consumption. The consumption trend has indicated all this. It has also strengthened the argument for the need to cut down emissions and sweep out historical emissions through the implementation of Carbon Capture, Utilization, and Storage (CCUS) and Carbon Dioxide Removal (CDR) technologies respectively. This is required to control global warming. Direct Air Capture (DAC) is one of the CDR technologies. Extensive research and projections have suggested that DAC has tremendous potential to achieve global climate change mitigation goals. The feasibility of DAC is proven but work is required to bridge gaps in DAC research to make it affordable and scalable. Process modelling is an approach used to address these concerns. Current DAC research in system design and modelling is discrete and existing models have limited use cases. This work is focused on the development of a generalized process mass transfer model for the capture stage of solid sorbent DAC contactors. It provides flexibility for defining contactor geometry, selection of ambient conditions, and versatility to plug different sorbents in it for CO2 capture. The modelling procedure is explained, and a robustness check is performed to ensure model integrity. The results of the robustness check and sensitivity analysis are then explained. This research is part of a long-term effort to create a complete modelling package for the DAC community to boost research and development to large-scale deployments.
Date Created
2023
Agent

Mathematical Modeling of Moisture Swing Sorption in Ion-Exchange Resins (IER) for Passive Direct Air Capture of CO2

190717-Thumbnail Image.png
Description
The cost of capturing carbon dioxide (CO2) from ambient air needs to be greatly reduced if it is to contribute significantly to mitigating climate change. Ion-exchange resin (IER) with quaternary ammonium cation binds CO2 when dry and releases it when

The cost of capturing carbon dioxide (CO2) from ambient air needs to be greatly reduced if it is to contribute significantly to mitigating climate change. Ion-exchange resin (IER) with quaternary ammonium cation binds CO2 when dry and releases it when wet without supplemental energy, making the process attractive for economical Direct Air Capture (DAC). In this study, a design case basis was developed for a system of collectors capable of capturing 1000 tons/day of CO2 via moisture swing sorption. The model uses varying weather parameters such as temperature, wind speed, and relative humidity to understand the impact of weather on the sorbent loading, cycle time (capture and regeneration), and net water loss. Two independent isotherm models, namely Flory Huggins and the modified Langmuir isotherm model were used to estimate the water and CO2 loading of the resin respectively as a function of relative humidity. The capture model suggests a higher capture rate during the summer and daytime (in a diurnal cycle) as the relative humidity is lower. A design optimization model was developed to minimize the capture time and maximize the sorbent loading. The crude rate production and the net water loss can help conduct an economic analysis to determine the cost of carbon capture.
Date Created
2023
Agent

Experimental Characterization of Sorbents for Direct Air Capture of Carbon Dioxide

171967-Thumbnail Image.png
Description
Climate change poses a serious challenge humankind. Society’s reliance on fossil fuels raises atmospheric CO2 concentrations causing global warming. Already, the planet has warmed by 1.1 °C making it nearly impossible to heed the advice of the IPCC (2022) and

Climate change poses a serious challenge humankind. Society’s reliance on fossil fuels raises atmospheric CO2 concentrations causing global warming. Already, the planet has warmed by 1.1 °C making it nearly impossible to heed the advice of the IPCC (2022) and prevent warming in excess of 1.5 °C by 2050. Even the current excess of CO2 in the atmosphere poses significant risks. Direct air capture (DAC) of CO2 offers one of the most scalable options to the drawdown of carbon. DAC can collect CO2 that is already diluted into the atmosphere for disposal or utilization. Central to most DAC are sorbents, i.e., materials that bind and release CO2 in a capture and release cycle. There are sorbents that cycle through a temperature swing. Others use a moisture swing, or a pressure swing or combinations of all of them. Since DAC is still a nascent technology, advancement of sorbents is an important part of DAC development. There is a nearly infinite combination of possible sorbents and form factors of sorbents that can be deployed in many different variations of DAC. Our goal is to develop a methodology for characterizing sorbents to facilitate rational choices among different options. Good sorbent characteristics include high capacity, fast sorption and desorption kinetics, low energy need for unloading, and longevity. This work presents the development of a systematic approach to evaluate sorbents from the milligram to tonne scale focusing on the important characteristics mentioned above. The work identified a good temperature swing sorbent whose characterization moved from the mg to kg scale without loss in performance. This work represents a first step in systematizing sorbent characterization for rational sorbent development programs.
Date Created
2022
Agent