190717-Thumbnail Image.png
Description
The cost of capturing carbon dioxide (CO2) from ambient air needs to be greatly reduced if it is to contribute significantly to mitigating climate change. Ion-exchange resin (IER) with quaternary ammonium cation binds CO2 when dry and releases it when

The cost of capturing carbon dioxide (CO2) from ambient air needs to be greatly reduced if it is to contribute significantly to mitigating climate change. Ion-exchange resin (IER) with quaternary ammonium cation binds CO2 when dry and releases it when wet without supplemental energy, making the process attractive for economical Direct Air Capture (DAC). In this study, a design case basis was developed for a system of collectors capable of capturing 1000 tons/day of CO2 via moisture swing sorption. The model uses varying weather parameters such as temperature, wind speed, and relative humidity to understand the impact of weather on the sorbent loading, cycle time (capture and regeneration), and net water loss. Two independent isotherm models, namely Flory Huggins and the modified Langmuir isotherm model were used to estimate the water and CO2 loading of the resin respectively as a function of relative humidity. The capture model suggests a higher capture rate during the summer and daytime (in a diurnal cycle) as the relative humidity is lower. A design optimization model was developed to minimize the capture time and maximize the sorbent loading. The crude rate production and the net water loss can help conduct an economic analysis to determine the cost of carbon capture.
Reuse Permissions


  • Download restricted until 2025-12-01.

    Details

    Title
    • Mathematical Modeling of Moisture Swing Sorption in Ion-Exchange Resins (IER) for Passive Direct Air Capture of CO2
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2023
    • Field of study: Chemical Engineering

    Machine-readable links