Investigating the Effect of Atmospheric Ozone on Ragweed Pollen

193580-Thumbnail Image.png
Description
Pollen allergies are common in the United States, especially in Arizona. In addition to more people experiencing allergies, the allergies themselves are worse, with people reporting more severe and longer lasting symptoms, after moving to Arizona. Potential reasons behind this

Pollen allergies are common in the United States, especially in Arizona. In addition to more people experiencing allergies, the allergies themselves are worse, with people reporting more severe and longer lasting symptoms, after moving to Arizona. Potential reasons behind this include a longer blooming season in the state, a lack of rain to wash out pollen from the atmosphere, and compounding factors of poor air quality. One significant contributor to poor air quality are high ozone levels in urban areas like Phoenix. The goal of this study is to determine if ozone and pollen interact in a way that changes pollen physically or chemically. Ragweed pollen was placed in a chamber and exposed to low, medium, and high levels of ozone for 6-72 hours corresponding to different exposure doses. Exposed and non-exposed pollen was analyzed for physical changes in the pollen grain using scanning electron microscopy (SEM). Chemical changes were investigated using Fourier Transform Infrared Spectroscopy (FT-IR). Finally, exposed and non-exposed pollen was analyzed for changes in lipid profiles using gas chromatography mass spectrometry (GC/MS). SEM analysis found that when ragweed pollen is exposed to high ozone levels (60-100 ppm, > 48 hours), pollen grains become damaged. The same exposure level results in chemical changes in the pollen that are detectable by FT-IR. A higher ozone dose results in worse physical damage and increased changes in the lipid profile. Future research should study a wider ranges of exposure doses and relate the physicochemical changes to differences in immune response.
Date Created
2024
Agent

Evolution of Improved Amino Acid Growing Abilities in Escherichia coli

164737-Thumbnail Image.png
Description
Different populations of evolved E.coli and their ancestors were grown in a variety of single amino acid environments to determine their ability to use that amino acid as a carbon source. Some evolved lines were able to grow in amino

Different populations of evolved E.coli and their ancestors were grown in a variety of single amino acid environments to determine their ability to use that amino acid as a carbon source. Some evolved lines were able to grow in amino acids that their ancestors weren't able to. The source of this change in amino acid growth was investigated by testing uptake, searching for candidate mutations, and comparing growth rates of populations with and without certain mutations.
Date Created
2022-05
Agent