Description
Pollen allergies are common in the United States, especially in Arizona. In addition to more people experiencing allergies, the allergies themselves are worse, with people reporting more severe and longer lasting symptoms, after moving to Arizona. Potential reasons behind this

Pollen allergies are common in the United States, especially in Arizona. In addition to more people experiencing allergies, the allergies themselves are worse, with people reporting more severe and longer lasting symptoms, after moving to Arizona. Potential reasons behind this include a longer blooming season in the state, a lack of rain to wash out pollen from the atmosphere, and compounding factors of poor air quality. One significant contributor to poor air quality are high ozone levels in urban areas like Phoenix. The goal of this study is to determine if ozone and pollen interact in a way that changes pollen physically or chemically. Ragweed pollen was placed in a chamber and exposed to low, medium, and high levels of ozone for 6-72 hours corresponding to different exposure doses. Exposed and non-exposed pollen was analyzed for physical changes in the pollen grain using scanning electron microscopy (SEM). Chemical changes were investigated using Fourier Transform Infrared Spectroscopy (FT-IR). Finally, exposed and non-exposed pollen was analyzed for changes in lipid profiles using gas chromatography mass spectrometry (GC/MS). SEM analysis found that when ragweed pollen is exposed to high ozone levels (60-100 ppm, > 48 hours), pollen grains become damaged. The same exposure level results in chemical changes in the pollen that are detectable by FT-IR. A higher ozone dose results in worse physical damage and increased changes in the lipid profile. Future research should study a wider ranges of exposure doses and relate the physicochemical changes to differences in immune response.
Reuse Permissions
  • Downloads
    PDF (1.3 MB)

    Details

    Title
    • Investigating the Effect of Atmospheric Ozone on Ragweed Pollen
    Contributors
    Date Created
    2024
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2024
    • Field of study: Chemistry

    Machine-readable links