Machine Learning Assisted Security for Edge Computing Applications
Description
Edge computing applications have recently gained prominence as the world of internet-of-things becomes increasingly embedded into people's lives. Performing computations at the edge addresses multiple issues, such as memory bandwidth-latency bottlenecks, exposure of sensitive data to external attackers, etc. It is important to protect the data collected and processed by edge devices, and also to prevent unauthorized access to such data. It is also important to ensure that the computing hardware fits well within the tight energy and area budgets for the edge devices which are being progressively scaled-down in size. Firstly, a novel low-power smart security prototype chip that combines multiple entropy sources, such as real-time electrocardiogram (ECG) data, and SRAM-based physical unclonable functions (PUF), for authentication and cryptography applications is proposed. Up to ~12X improvement in the equal error rate compared to a prior ECG-only authentication system is achieved by combining feature vectors obtained from ECG, heart rate variability, and SRAM PUF. The resulting vectors can also be utilized for secure cryptography applications. Secondly, a novel in-memory computing (IMC) hardware noise-aware training algorithms that make DNNs more robust to hardware noise is developed and evaluated. Up to 17% accuracy was recovered in deep neural networks (DNNs) deployed on IMC prototype hardware. The noise-aware training principles are also used to improve the adversarial robustness of DNNs, and successfully defend against both adversarial input and weight attacks. Up to ~10\% improvement in robustness against adversarial input attacks, and up to 33% improvement in robustness against adversarial weight attacks are achieved. Finally, a DNN training algorithm that pursues and optimises both activation and weight sparsity simultaneously is proposed and evaluated to obtain highly compressed DNNs. This lead to up to 4.7x reduction in the total number of flops required to perform complex image recognition tasks. A custom sparse inference accelerator is designed and synthesized to evaluate the benefits of the above flop reduction. A speedup of 4.24x is achieved. In summary, this dissertation contains innovative algorithm and hardware design techniques aided by machine learning, which enhance the security and efficiency of edge computing applications.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Agent
- Author (aut): Cherupally, Sai Kiran
- Thesis advisor (ths): Seo, Jae-Sun
- Committee member: Chakrabarti, Chaitali
- Committee member: Cao, Yu (Kevin)
- Committee member: Fan, Deliang
- Publisher (pbl): Arizona State University