Spatial Optimization Models and Algorithms with Applications to Conservation Planning and Interdiction

189351-Thumbnail Image.png
Description
Environmental problems are more abundant because of the rapid increase in urbanization, climate change, and population growth leading to the depletion of natural resources and endangerment of some species. The availability of infrastructure as well as socio-economic factors facilitate the

Environmental problems are more abundant because of the rapid increase in urbanization, climate change, and population growth leading to the depletion of natural resources and endangerment of some species. The availability of infrastructure as well as socio-economic factors facilitate the illicit trade of wildlife through supply chain networks, adding further threats to species. Ecosystem conservation and protection of wildlife from illegal trade and poaching is fundamental to guarantee the survival of endangered species. Conservation efforts require a landscape approach that incorporates spatial features for the effective functionality of the selected reserve. This dissertation studies combinatorial optimization problems with application to two classes of societal problems: landscape conservation and disruption of illicit supply chains. The first and second chapter propose a mixed-integer formulation to model the reserve design problem with budget and ecological constraints. The first uses the radius of the smallest circle enclosing the selected areas as a metric of compactness. An extension of the model is proposed to solve the multi reserve design problem and the reserve expansion problem. The solution approach includes warm start heuristic, separation problem and cuts to improve model performance. The enhanced model outperforms the linearized and the equivalent nonlinear model. The second chapter uses the Reock’s metric as a metric of compactness. The solution approach includes warm start heuristic, knapsack based separation problem to inject solutions, and cuts to improve model performance. The enhanced model outperforms the default model. The third chapter proposes an integer programming model to solve the wildlife corridor design problem with minimum width requirement and a budget constraint. A separation algorithm is proposed to identify boundary patches and violations in the corridor width. A branch-and-cut approach is proposed to induce the corridor width and is tested on real-life landscape. The fourth chapter proposes an integer programming formulation to model the disruption of illicit supply chain problem. The proposed model enforces that at least x paths must be disrupted for an Origin-Destination pair to be disrupted and at least y arcs must be disrupted for a path to be disrupted. The proposed model is tested on real-life road networks.
Date Created
2023
Agent

Optimization Model and Algorithm for the Design of Connected and Compact Conservation Reserves

157648-Thumbnail Image.png
Description
Conservation planning is fundamental to guarantee the survival of endangered species and to preserve the ecological values of some ecosystems. Planning land acquisitions increasingly requires a landscape approach to mitigate the negative impacts of spatial threats such as urbanization, agricultural

Conservation planning is fundamental to guarantee the survival of endangered species and to preserve the ecological values of some ecosystems. Planning land acquisitions increasingly requires a landscape approach to mitigate the negative impacts of spatial threats such as urbanization, agricultural development, and climate change. In this context, landscape connectivity and compactness are vital characteristics for the effective functionality of conservation reserves. Connectivity allows species to travel across landscapes, facilitating the flow of genes across populations from different protected areas. Compactness measures the spatial dispersion of protected sites, which can be used to mitigate risk factors associated with species leaving and re-entering the reserve. This research proposes an optimization model to identify areas to protect while enforcing connectivity and compactness. In the suggested projected area, this research builds upon existing methods and develops an alternative metric of compactness that penalizes the selection of patches of land with few protected neighbors. The new metric is referred as leaf because it intends to minimize the number of selected areas with 1 neighboring protected area. The model includes budget and minimum selected area constraints to reflect realistic financial and ecological requirements. Using a lexicographic approach, the model can improve the compactness of conservation reserves obtained by other methods. The use of the model is illustrated by solving instances of up to 1100 patches.
Date Created
2019
Agent