Analyzing the Survival of Hydrogel-Encapsulated Pancreatic Cells for Use in Islet Transplantation

165285-Thumbnail Image.png
Description

Type 1 diabetes is a metabolic disorder in which the pancreas produces little to no insulin due to the cells being destroyed by a person’s own body. A potential treatment for this disorder is the allogeneic transplantation of pancreatic beta

Type 1 diabetes is a metabolic disorder in which the pancreas produces little to no insulin due to the cells being destroyed by a person’s own body. A potential treatment for this disorder is the allogeneic transplantation of pancreatic beta cells. Unfortunately, this potential solution requires the use of immunosuppressants. For my project with the Weaver Lab, I will be assessing pseudoislet survival in macroencapsulation via injection molding. I will be analyzing survival and metabolic assays of the pseudoislets in the mold process. Pseudoislets in hydrogels usually undergo hypoxia-included cell death due to the diffusion distances oxygen has to travel. We will test the impact of macroencapsulation device geometry on hypoxia within encapsulated cells. I will be culturing pancreatic cells and encapsulating them in hydrogels. Macroencapsulation devices will be utilized to shield islets from the immune system and eliminate the need for immunosuppressants. In order to analyze the cells’ structure and to ensure their viability, confocal microscopy will be used. Staining for live cells will be done using calcein AM which produces green fluorescence and indicates live cells. Staining for dead cells on the other hand will be done using an ethidium homodimer which produces red fluorescence and indicates dead cells. To determine if the cells are metabolically active the Alamar Blue assay will be used.

Date Created
2022-05
Agent

Engineering Novel Microbead Encapsulated Three-Dimensional Tumor and Stem Cell Models

Description
Cellular assays are the backbone of biological studies - be it for tissue modeling, drug discovery, therapeutics, or diagnostics. Two-dimensional (2D) cell culture has been deployed for several decades to garner physiologically relevant information and predict data before the cost-intensive

Cellular assays are the backbone of biological studies - be it for tissue modeling, drug discovery, therapeutics, or diagnostics. Two-dimensional (2D) cell culture has been deployed for several decades to garner physiologically relevant information and predict data before the cost-intensive animal testing. Although 2D techniques have been valuable for cellular assays, they have a colossal limitation - they do not adequately consider the natural three-dimensional (3D) microenvironment of the cells. As a result, they sometimes provide misleading statistics. Therefore, it is important to develop a 3D model that predicts cellular behaviors and their interaction with neighboring cells and extracellular matrix (ECM) in a more realistic manner. In recent biomedical research, various platforms have been modeled to generate 3D prototypes of tissues, spheroids, in vitro that could allow the study of cellular responses resembling in vivo environments, such as matrices, scaffolds, and devices. But most of these platforms have drawbacks such as lack of spheroid size control, low yield, or high cost associated with them. On the other hand, Amikagel is a low cost, high-fidelity platform that can facilitate the convenient generation of tumor and stem cell spheroids. Furthermore, Amikabeads are aminoglycoside-derived hydrogel microbeads derived from the same monomers as Amikagel. They are a versatile platform with several chemical groups that can be exploited for encapsulating the spheroids and investigating the delivery of bioactive compounds to the cells. This thesis is focused on engineering novel 3D tumor and stem cell models generated on Amikagel and encapsulated in Amikabeads for proximal delivery of bioactive compounds and applications in regenerative medicine.
Date Created
2020
Agent

Thermo-responsive Copolymers with Enzyme-dependent Lower Critical Solution: Temperatures for Endovascular Embolization

157386-Thumbnail Image.png
Description
Minimally invasive endovascular embolization procedures decrease surgery time, speed up recovery, and provide the possibility for more comprehensive treatment of aneurysms, arteriovenous malformations (AVMs), and hypervascular tumors. Liquid embolic agents (LEAs) are preferred over mechanical embolic agents, such as coils,

Minimally invasive endovascular embolization procedures decrease surgery time, speed up recovery, and provide the possibility for more comprehensive treatment of aneurysms, arteriovenous malformations (AVMs), and hypervascular tumors. Liquid embolic agents (LEAs) are preferred over mechanical embolic agents, such as coils, because they achieve homogeneous filling of aneurysms and more complex angioarchitectures. The gold standard of commercially available LEAs is dissolved in dimethyl sulfoxide (DMSO), which has been associated with vasospasm and angiotoxicity. The aim of this study was to investigate amino acid substitution in an enzyme-degradable side group of an N-isopropylacrylamide (NIPAAm) copolymer for the development of a LEA that would be delivered in water and degrade at the rate that tissue is regenerated. NIPAAm copolymers have a lower critical solution temperature (LCST) due to their amphiphilic nature. This property enables them to be delivered as liquids through a microcatheter below their LCST and to solidify in situ above the LCST, which would result in the successful selective occlusion of blood vessels. Therefore, in this work, a series of poly(NIPAAm-co-peptide) copolymers with hydrophobic side groups containing the Ala-Pro-Gly-Leu collagenase substrate peptide sequence were synthesized as in situ forming, injectable copolymers.. The Gly-Leu peptide bond in these polypeptides is cleaved by collagenase, converting the side group into the more hydrophilic Gly-Ala-Pro-Gly-COOH (GAPG-COOH), thus increasing the LCST of the hydrogel after enzyme degradation. Enzyme degradation property and moderate mechanical stability convinces the use of these copolymers as liquid embolic agents.
Date Created
2019
Agent