Volatile Biomarkers for a Valley Fever Breath Test

Description
Coccidioidomycosis, or Valley fever, is an endemic pneumonia of the arid and semi-arid regions of North and South America and is responsible for up to 30% of community-acquired pneumonias in endemic and highly populated areas of the United States southwest.

Coccidioidomycosis, or Valley fever, is an endemic pneumonia of the arid and semi-arid regions of North and South America and is responsible for up to 30% of community-acquired pneumonias in endemic and highly populated areas of the United States southwest. The causative agents of Valley fever are the dimorphic fungi Coccidioides immitis and Coccidioides posadasii, which grow as mycelia in the environment and spherules within the lungs of vulnerable hosts. The current diagnostics for Valley fever are severely lacking due to poor sensitivity and invasiveness, strongly contributing to a 23-day median time-to-diagnosis. There is a critical need for sensitive and non-invasive diagnostics for identifying Valley fever lung infections. The long-term goal of my work is to substantially shorten the time-to-diagnosis for Valley fever through the development of sensitive and specific breath-based diagnostics for coccidioidomycosis lung infections. Herein, I characterized the volatile organic compounds (VOCs) produced by C. immitis and C. posadasii in vitro and evaluated the relationship of the volatile metabolomes to lifecycle. I explored the VOC profiles of bronchoalveolar lavage fluid (BALF) samples from mouse model lung infections of Valley fever. Finally, I investigated the VOC profiles of BALF from persons with community-acquired pneumonia. All VOCs were analyzed by headspace solid-phase microextraction and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS). The volatile metabolomes were compared using a variety of statistical analyses. For the in vitro samples, I detected a total of 353 VOCs that were at least two-fold more abundant in a Coccidioides culture versus medium controls and found the volatile metabolome of Coccidioides is more dependent on lifecycle than species. The mouse BALF samples indicate that lung infection VOCs are correlated to cytokine production and classify mice based on their individual level of infection. From the human BALF samples, I identified VOCs that were able to differentiate between Coccidioides and bacterial pneumonia. Combined, these studies suggest that Coccidioides spp. and the host produce volatile metabolites that may yield biomarkers for a Valley fever breath test.
Date Created
2023
Agent

Comprehensive Two-dimensional Gas Chromatography as a Tool for Exploring the In Vitro Volatile Metabolome of Pseudomonas aeruginosa: A Case Study in Untargeted Metabolomics

168825-Thumbnail Image.png
Description
For untargeted volatile metabolomics analyses, comprehensive two-dimensional gas chromatography (GC×GC) is a powerful tool for separating complex mixtures and can provide highly specific information about the chemical composition of a variety of samples. With respect to human disease, the application

For untargeted volatile metabolomics analyses, comprehensive two-dimensional gas chromatography (GC×GC) is a powerful tool for separating complex mixtures and can provide highly specific information about the chemical composition of a variety of samples. With respect to human disease, the application of GC×GC in untargeted metabolomics is contributing to the development of diagnostics for a range of diseases, most notably bacterial infections. Pseudomonas aeruginosa, in particular, is an important human pathogen, and for individuals with cystic fibrosis (CF), chronic P. aeruginosa lung infections significantly increase morbidity and mortality. Developing non-invasive tools that detect these infections earlier is critical for improving patient outcomes, and untargeted profiling of P. aeruginosa volatile metabolites could be leveraged to meet this challenge. The work presented in this dissertation serves as a case study of the application of GC×GC in this area.Using headspace solid-phase microextraction and time-of-flight mass spectrometry coupled with GC×GC (HS-SPME GC×GC-TOFMS), the volatile metabolomes of P. aeruginosa isolates from early and late chronic CF lung infections were characterized. Through this study, the size of the P. aeruginosa pan-volatilome was increased by almost 40%, and differences in the relative abundances of the volatile metabolites between early- and late-infection isolates were identified. These differences were also strongly associated with isolate phenotype. Subsequent analyses sought to connect these metabolome-phenome trends to the genome by profiling the volatile metabolomes of P. aeruginosa strains harboring mutations in genes that are important for regulating chronic infection phenotypes. Subsets of volatile metabolites that accurately distinguish between wild-type and mutant strains were identified. Together, these results highlight the utility of GC×GC in the search for prognostic volatile biomarkers for P. aeruginosa CF lung infections. Finally, the complex data sets acquired from untargeted GC×GC studies pose major challenges in downstream statistical analysis. Missing data, in particular, severely limits even the most robust statistical tools and must be remediated, commonly through imputation. A comparison of imputation strategies showed that algorithmic approaches such as Random Forest have superior performance over simpler methods, and imputing within replicate samples reinforces volatile metabolite reproducibility.
Date Created
2022
Agent

Influence of Media on Breath Biomarker Development for Staphylococcal Infections

161272-Thumbnail Image.png
Description
Staphylococcus aureus permanently asymptomatically colonizes one-third of humans, yet is an opportunistic pathogen causing life threatening diseases. Diagnosing S. aureus infections requires differentiating S. aureus from the human commensal Staphylococcus epidermidis, which beneficially colonizes the skin of all people. These

Staphylococcus aureus permanently asymptomatically colonizes one-third of humans, yet is an opportunistic pathogen causing life threatening diseases. Diagnosing S. aureus infections requires differentiating S. aureus from the human commensal Staphylococcus epidermidis, which beneficially colonizes the skin of all people. These studies aimed to characterize the volatile metabolites of S. aureus and S. epidermidis, and to measure the influence of growth medium on the discovery of volatile organic compounds that differentiate them. Headspace solid-phase microextraction and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detected 337 S. aureus and S. epidermidis headspace volatiles produced during aerobic growth in four complex media. Analyses revealed that only 20 – 40% of staph volatiles are produced by both species in any one medium. Using principal components and hierarchical clustering analyses of the staphylococcal volatiles showed individual clustering of S. aureus and S. epidermidis independent of culturing media but clustering of replicate cultures by growth medium within species. Subsets of volatiles produced in common by both species, or in common across all four media, revealed volatilome differences between S. aureus and S. epidermidis based on the volatiles’ relative abundances. When analyzing volatiles by relative abundances, culturing staph in media containing free glucose (brain heart infusion and tryptic soy broth) revealed volatilomes dominated by acids and esters (67%). The low-glucose media (lysogeny broth and Mueller-Hinton broth) yielded ketones in greatest relative abundances, yet also produced highly dissimilar volatilome compositions. The staphylococcal volatilome is strongly influenced by the nutritional composition of growth medium, especially free glucose availability, which is robustly evident when analyzing the relative abundances of the volatiles, compared to their presence versus absence. Future work will evaluate more strains of each species, testing the universality of these results. Prospective analyses involve hypotheses testing on the role of catabolite repression control and glucose availability on the volatilome, with plans to model in vitro culture conditions that replicate in vivo volatilomes. Studies assessing correlations of virulence to species-specific volatilome responses to free glucose may identify pathogenic strains of S. epidermidis and other staphylococcal commensals.
Date Created
2021
Agent

Characterizing the Phenotypic and Transcriptional Responses of Salmonella Typhimurium at Stationary and Lag Phases of Growth in Response to a Low Fluid Shear Environment

Description
The discovery that mechanical forces regulate microbial virulence, stress responses and gene expression was made using log phase cultures of Salmonella Typhimurium (S. Typhimurium) grown under low fluid shear (LFS) conditions relevant to those encountered in the intestine. However, there

The discovery that mechanical forces regulate microbial virulence, stress responses and gene expression was made using log phase cultures of Salmonella Typhimurium (S. Typhimurium) grown under low fluid shear (LFS) conditions relevant to those encountered in the intestine. However, there has been limited characterization of LFS on other growth phases. To advance the growth-phase dependent understanding of the effect of LFS on S. Typhimurium pathogenicity, this dissertation characterized the effect of LFS on the transcriptomic and phenotypic responses in both stationary and lag phase cultures. In response to LFS, stationary phase cultures exhibited alterations in gene expression associated with metabolism, transport, secretion and stress responses (acid, bile salts, oxidative, and thermal stressors), motility, and colonization of intestinal epithelium (adherence, invasion and intracellular survival). Many of these characteristics are known to be regulated by the stationary phase general stress response regulator, RNA polymerase sigma factor S (RpoS), when S. Typhimurium is grown under conventional conditions. Surprisingly, the stationary phase phenotypic LFS stress response to acid and bile salts, colonization of human intestinal epithelial cells, and swimming motility was not dependent on RpoS. Lag phase cultures exhibited intriguing differences in their LFS regulated transcriptomic and phenotypic profiles as compared to stationary phase cultures, including LFS-dependent regulation of gene expression, adherence to intestinal epithelial cells, and high thermal stress. Furthermore, the addition of cell-free conditioned supernatants derived from either stationary phase LFS or Control cultures modulated the gene expression of lag phase cultures in a manner that differed from either growth phase, however, these supernatants did not modulate the phenotypic responses of lag phase cultures. Collectively, these results demonstrated that S. Typhimurium can sense and respond to LFS as early as lag phase, albeit in a limited fashion, and that the lag phase transcriptomic and phenotypic responses differ from those in stationary phase, which hold important implications for the lifecycle of this pathogen during the infection process.
Date Created
2020
Agent

Proteins and their glycosylations as diagnostic biomarkers of Valley Fever

157231-Thumbnail Image.png
Description
Valley Fever (VF), is a potentially lethal fungal pneumonia caused by Coccidioides spp., which is estimated to cause ~15-30% of all community-acquired pneumonias in the highly endemic Greater Phoenix and Tucson areas of Arizona. However, an accurate antigen-based diagnostic is

Valley Fever (VF), is a potentially lethal fungal pneumonia caused by Coccidioides spp., which is estimated to cause ~15-30% of all community-acquired pneumonias in the highly endemic Greater Phoenix and Tucson areas of Arizona. However, an accurate antigen-based diagnostic is still lacking. In order to identify protein and glycan antigen biomarkers of infection, I used a combination of genomics, proteomics and glycomics analyses to provide evidence of genus-specific proteins and glycosylations. The next goal was to determine if Coccidioides-specific glycans were present in biological samples from VF patients. Urine collected from 77 humans and 63 dogs were enriched for glycans and evaluated by mass spectrometry for Coccidioides-specific glycans and evaluated against a panel of normal donor urines, urines from patients infected with other fungi, and fungal cultures from closely related pneumonia-causing fungi. A combination of 6 glycan biomarkers was 100% sensitive and 100% specific in the diagnosis of human VF subjects, while only 3 glycan biomarkers were needed for 100% sensitivity and 100 specificity in the diagnosis of dog VF subject. Additionally, a blinded trial of 23 human urine samples was correctly able to classify urine samples with 93.3% sensitivity and 100% specificity. The results of this research provides evidence that Coccidioides genus-specific glycosylations have potential as antigens in diagnostic assays.
Date Created
2019
Agent