Description
Coccidioidomycosis, or Valley fever, is an endemic pneumonia of the arid and semi-arid regions of North and South America and is responsible for up to 30% of community-acquired pneumonias in endemic and highly populated areas of the United States southwest.

Coccidioidomycosis, or Valley fever, is an endemic pneumonia of the arid and semi-arid regions of North and South America and is responsible for up to 30% of community-acquired pneumonias in endemic and highly populated areas of the United States southwest. The causative agents of Valley fever are the dimorphic fungi Coccidioides immitis and Coccidioides posadasii, which grow as mycelia in the environment and spherules within the lungs of vulnerable hosts. The current diagnostics for Valley fever are severely lacking due to poor sensitivity and invasiveness, strongly contributing to a 23-day median time-to-diagnosis. There is a critical need for sensitive and non-invasive diagnostics for identifying Valley fever lung infections. The long-term goal of my work is to substantially shorten the time-to-diagnosis for Valley fever through the development of sensitive and specific breath-based diagnostics for coccidioidomycosis lung infections. Herein, I characterized the volatile organic compounds (VOCs) produced by C. immitis and C. posadasii in vitro and evaluated the relationship of the volatile metabolomes to lifecycle. I explored the VOC profiles of bronchoalveolar lavage fluid (BALF) samples from mouse model lung infections of Valley fever. Finally, I investigated the VOC profiles of BALF from persons with community-acquired pneumonia. All VOCs were analyzed by headspace solid-phase microextraction and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS). The volatile metabolomes were compared using a variety of statistical analyses. For the in vitro samples, I detected a total of 353 VOCs that were at least two-fold more abundant in a Coccidioides culture versus medium controls and found the volatile metabolome of Coccidioides is more dependent on lifecycle than species. The mouse BALF samples indicate that lung infection VOCs are correlated to cytokine production and classify mice based on their individual level of infection. From the human BALF samples, I identified VOCs that were able to differentiate between Coccidioides and bacterial pneumonia. Combined, these studies suggest that Coccidioides spp. and the host produce volatile metabolites that may yield biomarkers for a Valley fever breath test.
Reuse Permissions
  • Included in this item (2)


    Details

    Title
    • Volatile Biomarkers for a Valley Fever Breath Test
    Contributors
    Agent
    Date Created
    2023
    Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Microbiology

    Machine-readable links