Three-Dimensional Microfluidic Based Tumor-Vascular Model to Study Cancer Cell Invasion and Intravasation
Description
Breast cancer is the second leading cause of disease related death in women, contributing over
40,000 fatalities annually. The severe impact of breast cancer can be attributed to a poor
understanding of the mechanisms underlying cancer metastasis. A primary aspect of cancer
metastasis includes the invasion and intravasation that results in cancer cells disseminating from
the primary tumor and colonizing distant organs. However, the integrated study of invasion and
intravasation has proven to be challenging due to the difficulties in establishing a combined tumor
and vascular microenvironments. Compared to traditional in vitro assays, microfluidic models
enable spatial organization of 3D cell-laden and/or acellular matrices to better mimic human
physiology. Thus, microfluidics can be leveraged to model complex steps of metastasis. The
fundamental aim of this thesis was to develop a three-dimensional microfluidic model to study the
mechanism through which breast cancer cells invade the surrounding stroma and intravasate into
outerlying blood vessels, with a primary focus on evaluating cancer cell motility and vascular
function in response to biochemical cues.
A novel concentric three-layer microfluidic device was developed, which allowed for
simultaneous observation of tumor formation, vascular network maturation, and cancer cell
invasion/intravasation. Initially, MDA-MB-231 disseminated from the primary tumor and invaded
the acellular collagen present in the adjacent second layer. The presence of an endothelial network
in the third layer of the device drastically increased cancer cell invasion. Furthermore, by day 6 of
culture, cancer cells could be visually observed intravasating into the vascular network.
Additionally, the effect of tumor cells on the formation of the surrounding microvascular network
within the vascular layer was evaluated. Results indicated that the presence of the tumor
significantly reduced vessel diameter and increased permeability, which correlates with prior in vivo
data. The novel three-layer platform mimicked the in vivo spatial organization of the tumor and its
surrounding vasculature, which enabled investigations of cell-cell interactions during cancer
invasion and intravasation. This approach will provide insight into the cascade of events leading up
to intravasation, which could provide a basis for developing more effective therapeutics.
40,000 fatalities annually. The severe impact of breast cancer can be attributed to a poor
understanding of the mechanisms underlying cancer metastasis. A primary aspect of cancer
metastasis includes the invasion and intravasation that results in cancer cells disseminating from
the primary tumor and colonizing distant organs. However, the integrated study of invasion and
intravasation has proven to be challenging due to the difficulties in establishing a combined tumor
and vascular microenvironments. Compared to traditional in vitro assays, microfluidic models
enable spatial organization of 3D cell-laden and/or acellular matrices to better mimic human
physiology. Thus, microfluidics can be leveraged to model complex steps of metastasis. The
fundamental aim of this thesis was to develop a three-dimensional microfluidic model to study the
mechanism through which breast cancer cells invade the surrounding stroma and intravasate into
outerlying blood vessels, with a primary focus on evaluating cancer cell motility and vascular
function in response to biochemical cues.
A novel concentric three-layer microfluidic device was developed, which allowed for
simultaneous observation of tumor formation, vascular network maturation, and cancer cell
invasion/intravasation. Initially, MDA-MB-231 disseminated from the primary tumor and invaded
the acellular collagen present in the adjacent second layer. The presence of an endothelial network
in the third layer of the device drastically increased cancer cell invasion. Furthermore, by day 6 of
culture, cancer cells could be visually observed intravasating into the vascular network.
Additionally, the effect of tumor cells on the formation of the surrounding microvascular network
within the vascular layer was evaluated. Results indicated that the presence of the tumor
significantly reduced vessel diameter and increased permeability, which correlates with prior in vivo
data. The novel three-layer platform mimicked the in vivo spatial organization of the tumor and its
surrounding vasculature, which enabled investigations of cell-cell interactions during cancer
invasion and intravasation. This approach will provide insight into the cascade of events leading up
to intravasation, which could provide a basis for developing more effective therapeutics.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Agent
- Author (aut): Nagaraju, Supriya
- Thesis advisor (ths): Nikkhah, Mehdi
- Committee member: Ebrahimkhani, Mohammad
- Committee member: Kiani, Samira
- Publisher (pbl): Arizona State University