155825-Thumbnail Image.png
Description
Breast cancer is the second leading cause of disease related death in women, contributing over

40,000 fatalities annually. The severe impact of breast cancer can be attributed to a poor

understanding of the mechanisms underlying cancer metastasis. A primary aspect of cancer

metastasis

Breast cancer is the second leading cause of disease related death in women, contributing over

40,000 fatalities annually. The severe impact of breast cancer can be attributed to a poor

understanding of the mechanisms underlying cancer metastasis. A primary aspect of cancer

metastasis includes the invasion and intravasation that results in cancer cells disseminating from

the primary tumor and colonizing distant organs. However, the integrated study of invasion and

intravasation has proven to be challenging due to the difficulties in establishing a combined tumor

and vascular microenvironments. Compared to traditional in vitro assays, microfluidic models

enable spatial organization of 3D cell-laden and/or acellular matrices to better mimic human

physiology. Thus, microfluidics can be leveraged to model complex steps of metastasis. The

fundamental aim of this thesis was to develop a three-dimensional microfluidic model to study the

mechanism through which breast cancer cells invade the surrounding stroma and intravasate into

outerlying blood vessels, with a primary focus on evaluating cancer cell motility and vascular

function in response to biochemical cues.

A novel concentric three-layer microfluidic device was developed, which allowed for

simultaneous observation of tumor formation, vascular network maturation, and cancer cell

invasion/intravasation. Initially, MDA-MB-231 disseminated from the primary tumor and invaded

the acellular collagen present in the adjacent second layer. The presence of an endothelial network

in the third layer of the device drastically increased cancer cell invasion. Furthermore, by day 6 of

culture, cancer cells could be visually observed intravasating into the vascular network.

Additionally, the effect of tumor cells on the formation of the surrounding microvascular network

within the vascular layer was evaluated. Results indicated that the presence of the tumor

significantly reduced vessel diameter and increased permeability, which correlates with prior in vivo

data. The novel three-layer platform mimicked the in vivo spatial organization of the tumor and its

surrounding vasculature, which enabled investigations of cell-cell interactions during cancer

invasion and intravasation. This approach will provide insight into the cascade of events leading up

to intravasation, which could provide a basis for developing more effective therapeutics.
Reuse Permissions


  • Download restricted.
    Download count: 13

    Details

    Title
    • Three-Dimensional Microfluidic Based Tumor-Vascular Model to Study Cancer Cell Invasion and Intravasation
    Contributors
    Date Created
    2017
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Biomedical Engineering 2017

    Machine-readable links