Electrostatic Analysis of Gate All Around (GAA) Nanowire over FinFET

155704-Thumbnail Image.png
Description
CMOS Technology has been scaled down to 7 nm with FinFET replacing planar MOSFET devices. Due to short channel effects, the FinFET structure was developed to provide better electrostatic control on subthreshold leakage and saturation current over planar MOSFETs while

CMOS Technology has been scaled down to 7 nm with FinFET replacing planar MOSFET devices. Due to short channel effects, the FinFET structure was developed to provide better electrostatic control on subthreshold leakage and saturation current over planar MOSFETs while having the desired current drive. The FinFET structure has an undoped or fully depleted fin, which supports immunity from random dopant fluctuations (RDF – a phenomenon which causes a reduction in the threshold voltage and is prominent at sub 50 nm tech nodes due to lesser dopant atoms) and thus causes threshold voltage (Vth) roll-off by reducing the Vth. However, as the advanced CMOS technologies are shrinking down to a 5 nm technology node, subthreshold leakage and drain-induced-barrier-lowering (DIBL) are driving the introduction of new metal-oxide-semiconductor field-effect transistor (MOSFET) structures to improve performance. GAA field effect transistors are shown to be the potential candidates for these advanced nodes. In nanowire devices, due to the presence of the gate on all sides of the channel, DIBL should be lower compared to the FinFETs.

A 3-D technology computer aided design (TCAD) device simulation is done to compare the performance of FinFET and GAA nanowire structures with vertically stacked horizontal nanowires. Subthreshold slope, DIBL & saturation current are measured and compared between these devices. The FinFET’s device performance has been matched with the ASAP7 compact model with the impact of tensile and compressive strain on NMOS & PMOS respectively. Metal work function is adjusted for the desired current drive. The nanowires have shown better electrostatic performance over FinFETs with excellent improvement in DIBL and subthreshold slope. This proves that horizontal nanowires can be the potential candidate for 5 nm technology node. A GAA nanowire structure for 5 nm tech node is characterized with a gate length of 15 nm. The structure is scaled down from 7 nm node to 5 nm by using a scaling factor of 0.7.
Date Created
2017
Agent