Asymmetric Error Control for Classification in Medical Disease Diagnosis

161528-Thumbnail Image.png
Description
In classification applications, such as medical disease diagnosis, the cost of one type of error (false negative) could greatly outweigh the other (false positive) enabling the need of asymmetric error control. Due to this unique nature of the problem, traditional

In classification applications, such as medical disease diagnosis, the cost of one type of error (false negative) could greatly outweigh the other (false positive) enabling the need of asymmetric error control. Due to this unique nature of the problem, traditional machine learning techniques, even with much improved accuracy, may not be ideal as they do not provide a way to control the false negatives below a certain threshold. To address this need, a classification algorithm that can provide asymmetric error control is proposed. The theoretical foundation for this algorithm is based on Neyman-Pearson (NP) Lemma and it is complemented with sample splitting and order statistics to pick a threshold that enables an upper bound on the number of false negatives. Additionally, this classifier addresses the imbalance of the data, which is common in medical datasets, by using Hellinger distance as the splitting criterion. This eliminates the need of sampling methods, which add complexity and the need for parameter selection. This approach is used to create a novel tree-based classifier that enables asymmetric error control. Applications, such as prediction of the severity of cardiac arrhythmia, require classification over multiple classes. The NP oracle inequalities for binary classes are not immediately applicable for the multiclass NP classification, leading to a multi-step procedure proposed in this dissertation to extend the algorithm in the context of multiple classes. This classifier is used in predicting various forms of cardiac disease for both binary and multi-class classification problems with not only comparable accuracy metrics but also with full control over the number of false negatives. Moreover, this research allows us to pick the threshold for the classifier in a data adaptive way. This dissertation also shows that this methodology can be extended to non medical applications that require classification with asymmetric error control.
Date Created
2021
Agent

Development and use of an iPad-based resuscitation code-blue sheet for improving resuscitation outcomes during intensive patient care

154054-Thumbnail Image.png
Description
The American Heart Association recommended in 1997 the data elements that should be collected from resuscitations in hospitals. (15) Currently, data documentation from resuscitation events in hospitals, termed ‘code blue’ events, utilizes a paper form, which is institution-specific. Problems with

The American Heart Association recommended in 1997 the data elements that should be collected from resuscitations in hospitals. (15) Currently, data documentation from resuscitation events in hospitals, termed ‘code blue’ events, utilizes a paper form, which is institution-specific. Problems with data capture and transcription exists, due to the challenges of dynamic documentation of patient, event and outcome variables as the code blue event unfolds.

This thesis is based on the hypothesis that an electronic version of code blue real-time data capture would lead to improved resuscitation data transcription, and enable clinicians to address deficiencies in quality of care. The primary goal of this thesis is to create an iOS based application, primarily designed for iPads, for code blue events at the Mayo Clinic Hospital. The secondary goal is to build an open-source software development framework for converting paper-based hospital protocols into digital format.

The tool created in this study enabled data documentation to be completed electronically rather than on paper for resuscitation outcomes. The tool was evaluated for usability with twenty nurses, the end-users, at Mayo Clinic in Phoenix, Arizona. The results showed the preference of users for the iPad application. Furthermore, a qualitative survey showed the clinicians perceived the electronic version to be more accurate and efficient than paper-based documentation, both of which are essential for an emergency code blue resuscitation procedure.
Date Created
2015
Agent