Unsupervised Bayesian data cleaning techniques for structured data

153003-Thumbnail Image.png
Description
Recent efforts in data cleaning have focused mostly on problems like data deduplication, record matching, and data standardization; few of these focus on fixing incorrect attribute values in tuples. Correcting values in tuples is typically performed by a minimum cost

Recent efforts in data cleaning have focused mostly on problems like data deduplication, record matching, and data standardization; few of these focus on fixing incorrect attribute values in tuples. Correcting values in tuples is typically performed by a minimum cost repair of tuples that violate static constraints like CFDs (which have to be provided by domain experts, or learned from a clean sample of the database). In this thesis, I provide a method for correcting individual attribute values in a structured database using a Bayesian generative model and a statistical error model learned from the noisy database directly. I thus avoid the necessity for a domain expert or master data. I also show how to efficiently perform consistent query answering using this model over a dirty database, in case write permissions to the database are unavailable. A Map-Reduce architecture to perform this computation in a distributed manner is also shown. I evaluate these methods over both synthetic and real data.
Date Created
2014
Agent