Optical trapping schemes that exploit radiation forces, such as optical tweezers, are well understood and widely used to manipulate microparticles; however, these are typically effective only on short (sub-millimeter) length scales. In the past decade, manipulating micron sized objects over…
Optical trapping schemes that exploit radiation forces, such as optical tweezers, are well understood and widely used to manipulate microparticles; however, these are typically effective only on short (sub-millimeter) length scales. In the past decade, manipulating micron sized objects over large distances (∼0.5 meters) using photophoretic forces has been experimentally established. Photophoresis, discovered by Ehrenhaft in the early twentieth century, is the force a small particle feels when exposed to radiation while immersed in a gas. The anisotropic heating caused by the radiation results in a net momentum transfer on one side with the surrounding gas. To date, there is no theoretical evaluation of the photophoretic force in the case of an arbitrary illumination profile (i.e. not a plane wave) incident on a dielectric sphere, starting from Maxwell’s equations. Such a treatment is needed for the case of recently published photophoretic particle manipulation schemes that utilize complicated wavefronts such as diverging Laguerre-Gaussian-Bessel beams. Here the equations needed to determine the expansion coefficients for electromagnetic fields when represented as a superposition of spherical harmonics are derived. The algorithm of Driscoll and Healy for the efficient numerical integration of functions on the 2-sphere is applied and validated with the plane wave, whose analytic expansion is known. The expansion coefficients of the incident field are related to the field inside the sphere, from which the distribution of heat deposition can be evaluated. The incident beam is also related to the scattered field, from which the scattering forces may be evaluated through the Maxwell stress tensor. In future work, these results will be combined with heat diffusion/convection simulations within the sphere and a surrounding gas to predict the total forces on the sphere, which will be compared against experimental observations that so far remain unexplained.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Mathematical models are important tools for addressing problems that exceed experimental capabilities. In this work, I present ordinary and partial differential equation (ODE, PDE) models for two problems: Vicodin abuse and impact cratering.
The prescription opioid Vicodin is the nation's…
Mathematical models are important tools for addressing problems that exceed experimental capabilities. In this work, I present ordinary and partial differential equation (ODE, PDE) models for two problems: Vicodin abuse and impact cratering.
The prescription opioid Vicodin is the nation's most widely prescribed pain reliever. The majority of Vicodin abusers are first introduced via prescription, distinguishing it from other drugs in which the most common path to abuse begins with experimentation. I develop and analyze two mathematical models of Vicodin use and abuse, considering only those patients with an initial Vicodin prescription. Through adjoint sensitivity analysis, I show that focusing efforts on prevention rather than treatment has greater success at reducing the total population of abusers. I prove that solutions to each model exist, are unique, and are non-negative. I also derive conditions for which these solutions are asymptotically stable.
Verification and Validation (V&V) are necessary processes to ensure accuracy of computational methods. Simulations are essential for addressing impact cratering problems, because these problems often exceed experimental capabilities. I show that the Free Lagrange (FLAG) hydrocode, developed and maintained by Los Alamos National Laboratory, can be used for impact cratering simulations by verifying FLAG against two analytical models of aluminum-on-aluminum impacts at different impact velocities and validating FLAG against a glass-into-water laboratory impact experiment. My verification results show good agreement with the theoretical maximum pressures, and my mesh resolution study shows that FLAG converges at resolutions low enough to reduce the required computation time from about 28 hours to about 25 minutes.
Asteroid 16 Psyche is the largest M-type (metallic) asteroid in the Main Asteroid Belt. Radar albedo data indicate Psyche's surface is rich in metallic content, but estimates for Psyche's composition vary widely. Psyche has two large impact structures in its Southern hemisphere, with estimated diameters from 50 km to 70 km and estimated depths up to 6.4 km. I use the FLAG hydrocode to model the formation of the largest of these impact structures. My results indicate an oblique angle of impact rather than a vertical impact. These results also support previous claims that Psyche is metallic and porous.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In the field of infectious disease epidemiology, the assessment of model robustness outcomes plays a significant role in the identification, reformulation, and evaluation of preparedness strategies aimed at limiting the impact of catastrophic events (pandemics or the deliberate release of…
In the field of infectious disease epidemiology, the assessment of model robustness outcomes plays a significant role in the identification, reformulation, and evaluation of preparedness strategies aimed at limiting the impact of catastrophic events (pandemics or the deliberate release of biological agents) or used in the management of disease prevention strategies, or employed in the identification and evaluation of control or mitigation measures. The research work in this dissertation focuses on: The comparison and assessment of the role of exponentially distributed waiting times versus the use of generalized non-exponential parametric distributed waiting times of infectious periods on the quantitative and qualitative outcomes generated by Susceptible-Infectious-Removed (SIR) models. Specifically, Gamma distributed infectious periods are considered in the three research projects developed following the applications found in (Bailey 1964, Anderson 1980, Wearing 2005, Feng 2007, Feng 2007, Yan 2008, lloyd 2009, Vergu 2010). i) The first project focuses on the influence of input model parameters, such as the transmission rate, mean and variance of Gamma distributed infectious periods, on disease prevalence, the peak epidemic size and its timing, final epidemic size, epidemic duration and basic reproduction number. Global uncertainty and sensitivity analyses are carried out using a deterministic Susceptible-Infectious-Recovered (SIR) model. The quantitative effect and qualitative relation between input model parameters and outcome variables are established using Latin Hypercube Sampling (LHS) and Partial rank correlation coefficient (PRCC) and Spearman rank correlation coefficient (RCC) sensitivity indices. We learnt that: For relatively low (R0 close to one) to high (mean of R0 equals 15) transmissibility, the variance of the Gamma distribution for the infectious period, input parameter of the deterministic age-of-infection SIR model, is key (statistically significant) on the predictability of the epidemiological variables such as the epidemic duration and the peak size and timing of the prevalence of infectious individuals and therefore, for the predictability these variables, it is preferable to utilize a nonlinear system of Volterra integral equations, rather than a nonlinear system of ordinary differential equations. The predictability of epidemiological variables such as the final epidemic size and the basic reproduction number are unaffected by (or independent of) the variance of the Gamma distribution for the infectious period and therefore for the choice on which type of nonlinear system for the description of the SIR model (VIE's or ODE's) is irrelevant. Although, for practical proposes, with the aim of lowering the complexity and number operations in the numerical methods, a nonlinear system of ordinary differential equations is preferred. The main contribution lies in the development of a model based decision-tool that helps determine when SIR models given in terms of Volterra integral equations are equivalent or better suited than SIR models that only consider exponentially distributed infectious periods. ii) The second project addresses the question of whether or not there is sufficient evidence to conclude that two empirical distributions for a single epidemiological outcome, one generated using a stochastic SIR model under exponentially distributed infectious periods and the other under the non-exponentially distributed infectious period, are statistically dissimilar. The stochastic formulations are modeled via a continuous time Markov chain model. The statistical hypothesis test is conducted using the non-parametric Kolmogorov-Smirnov test. We found evidence that shows that for low to moderate transmissibility, all empirical distribution pairs (generated from exponential and non-exponential distributions) for each of the epidemiological quantities considered are statistically dissimilar. The research in this project helps determine whether the weakening exponential distribution assumption must be considered in the estimation of probability of events defined from the empirical distribution of specific random variables. iii) The third project involves the assessment of the effect of exponentially distributed infectious periods on estimates of input parameter and the associated outcome variable predictions. Quantities unaffected by the use of exponentially distributed infectious period within low transmissibility scenarios include, the prevalence peak time, final epidemic size, epidemic duration and basic reproduction number and for high transmissibility scenarios only the prevalence peak time and final epidemic size. An application designed to determine from incidence data whether there is sufficient statistical evidence to conclude that the infectious period distribution should not be modeled by an exponential distribution is developed. A method for estimating explicitly specified non-exponential parametric probability density functions for the infectious period from epidemiological data is developed. The methodologies presented in this dissertation may be applicable to models where waiting times are used to model transitions between stages, a process that is common in the study of life-history dynamics of many ecological systems.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)