Sentiment analysis for long-term stock prediction

154756-Thumbnail Image.png
Description
There have been extensive research in how news and twitter feeds can affect the outcome of a given stock. However, a majority of this research has studied the short term effects of sentiment with a given stock price.

There have been extensive research in how news and twitter feeds can affect the outcome of a given stock. However, a majority of this research has studied the short term effects of sentiment with a given stock price. Within this research, I studied the long-term effects of a given stock price using fundamental analysis techniques. Within this research, I collected both sentiment data and fundamental data for Apple Inc., Microsoft Corp., and Peabody Energy Corp. Using a neural network algorithm, I found that sentiment does have an effect on the annual growth of these companies but the fundamentals are more relevant when determining overall growth. The stocks which show more consistent growth hold more importance on the previous year’s stock price but companies which have less consistency in their growth showed more reliance on the revenue growth and sentiment on the overall company and CEO. I discuss how I collected my research data and used a multi-layered perceptron to predict a threshold growth of a given stock. The threshold used for this particular research was 10%. I then showed the prediction of this threshold using my perceptron and afterwards, perform an f anova test on my choice of features. The results showed the fundamentals being the better predictor of stock information but fundamentals came in a close second in several cases, proving sentiment does hold an effect over long term growth.
Date Created
2016
Agent

Learning from asymmetric models and matched pairs

151511-Thumbnail Image.png
Description
With the increase in computing power and availability of data, there has never been a greater need to understand data and make decisions from it. Traditional statistical techniques may not be adequate to handle the size of today's data or

With the increase in computing power and availability of data, there has never been a greater need to understand data and make decisions from it. Traditional statistical techniques may not be adequate to handle the size of today's data or the complexities of the information hidden within the data. Thus knowledge discovery by machine learning techniques is necessary if we want to better understand information from data. In this dissertation, we explore the topics of asymmetric loss and asymmetric data in machine learning and propose new algorithms as solutions to some of the problems in these topics. We also studied variable selection of matched data sets and proposed a solution when there is non-linearity in the matched data. The research is divided into three parts. The first part addresses the problem of asymmetric loss. A proposed asymmetric support vector machine (aSVM) is used to predict specific classes with high accuracy. aSVM was shown to produce higher precision than a regular SVM. The second part addresses asymmetric data sets where variables are only predictive for a subset of the predictor classes. Asymmetric Random Forest (ARF) was proposed to detect these kinds of variables. The third part explores variable selection for matched data sets. Matched Random Forest (MRF) was proposed to find variables that are able to distinguish case and control without the restrictions that exists in linear models. MRF detects variables that are able to distinguish case and control even in the presence of interaction and qualitative variables.
Date Created
2013
Agent