Computational Methods for Kinetic Reaction Systems

158258-Thumbnail Image.png
Description
This work is concerned with the study and numerical solution of large reaction diffusion systems with applications to the simulation of degradation effects in solar cells. A discussion of the basics of solar cells including the function of solar cells,

This work is concerned with the study and numerical solution of large reaction diffusion systems with applications to the simulation of degradation effects in solar cells. A discussion of the basics of solar cells including the function of solar cells, the degradation of energy efficiency that happens over time, defects that affect solar cell efficiency and specific defects that can be modeled with a reaction diffusion system are included. Also included is a simple model equation of a solar cell. The basics of stoichiometry theory, how it applies to kinetic reaction systems, and some conservation properties are introduced. A model that considers the migration of defects in addition to the reaction processes is considered. A discussion of asymptotics and how it relates to the numerical simulation of the lifetime of solar cells is included. A reduced solution is considered and a presentation of a numerical comparison of the reduced solution with the full solution on a simple test problem is included. Operator splitting techniques are introduced and discussed. Asymptotically preserving schemes combine asymptotics and operator splitting to use reasonable time steps. A presentation of a realistic example of this study applied to solar cells follows.
Date Created
2020
Agent

Dynamic Hopf bifurcation in spatially extended excitable systems from neuroscience

151397-Thumbnail Image.png
Description
One explanation for membrane accommodation in response to a slowly rising current, and the phenomenon underlying the dynamics of elliptic bursting in nerves, is the mathematical problem of dynamic Hopf bifurcation. This problem has been studied extensively for linear (deterministic

One explanation for membrane accommodation in response to a slowly rising current, and the phenomenon underlying the dynamics of elliptic bursting in nerves, is the mathematical problem of dynamic Hopf bifurcation. This problem has been studied extensively for linear (deterministic and stochastic) current ramps, nonlinear ramps, and elliptic bursting. These studies primarily investigated dynamic Hopf bifurcation in space-clamped excitable cells. In this study we introduce a new phenomenon associated with dynamic Hopf bifurcation. We show that for excitable spiny cables injected at one end with a slow current ramp, the generation of oscillations may occur an order one distance away from the current injection site. The phenomenon is significant since in the model the geometric and electrical parameters, as well as the ion channels, are uniformly distributed. In addition to demonstrating the phenomenon computationally, we analyze the problem using a singular perturbation method that provides a way to predict when and where the onset will occur in response to the input stimulus. We do not see this phenomenon for excitable cables in which the ion channels are embedded in the cable membrane itself, suggesting that it is essential for the channels to be isolated in the spines.
Date Created
2012
Agent

Computational study of the cone-horizontal cell feedback mechanism in the outer-plexiform layer of cat retina

150711-Thumbnail Image.png
Description
In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker

In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances the center flicker response of horizontal cells. The underlying mechanism for the feedback is still unclear but competing hypotheses have been proposed. One is the GABA hypothesis, which states that the feedback is mediated by gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter released from horizontal cells. Another is the ephaptic hypothesis, which contends that the feedback is non-GABAergic and is achieved through the modulation of electrical potential in the intersynaptic cleft between cones and horizontal cells. In this study, a continuum spine model of the cone-horizontal cell synaptic circuitry is formulated. This model, a partial differential equation system, incorporates both the GABA and ephaptic feedback mechanisms. Simulation results, in comparison with experiments, indicate that the ephaptic mechanism is necessary in order for the model to capture the major spatial and temporal dynamics of the BIFE effect. In addition, simulations indicate that the GABA mechanism may play some minor modulation role.
Date Created
2012
Agent