An Analysis of the Boundary Explorer Adaptive Sampling Technique

191035-Thumbnail Image.png
Description
With the explosion of autonomous systems under development, complex simulation models are being tested and relied on far more than in the recent past. This uptick in autonomous systems being modeled then tested magnifies both the advantages and disadvantages of

With the explosion of autonomous systems under development, complex simulation models are being tested and relied on far more than in the recent past. This uptick in autonomous systems being modeled then tested magnifies both the advantages and disadvantages of simulation experimentation. An inherent problem in autonomous systems development is when small changes in factor settings result in large changes in a response’s performance. These occurrences look like cliffs in a metamodel’s response surface and are referred to as performance mode boundary regions. These regions represent areas of interest in the autonomous system’s decision-making process. Therefore, performance mode boundary regions are areas of interest for autonomous systems developers.Traditional augmentation methods aid experimenters seeking different objectives, often by improving a certain design property of the factor space (such as variance) or a design’s modeling capabilities. While useful, these augmentation techniques do not target areas of interest that need attention in autonomous systems testing focused on the response. Boundary Explorer Adaptive Sampling Technique, or BEAST, is a set of design augmentation algorithms. The adaptive sampling algorithm targets performance mode boundaries with additional samples. The gap filling augmentation algorithm targets sparsely sampled areas in the factor space. BEAST allows for sampling to adapt to information obtained from pervious iterations of experimentation and target these regions of interest. Exploiting the advantages of simulation model experimentation, BEAST can be used to provide additional iterations of experimentation, providing clarity and high-fidelity in areas of interest along potentially steep gradient regions. The objective of this thesis is to research and present BEAST, then compare BEAST’s algorithms to other design augmentation techniques. Comparisons are made towards traditional methods that are already implemented in SAS Institute’s JMP software, or emerging adaptive sampling techniques, such as Range Adversarial Planning Tool (RAPT). The goal of this objective is to gain a deeper understanding of how BEAST works and where it stands in the design augmentation space for practical applications. With a gained understanding of how BEAST operates and how well BEAST performs, future research recommendations will be presented to improve BEAST’s capabilities.
Date Created
2024
Agent

A correlated random effects model for nonignorable missing data in value-added assessment of teacher effects

150494-Thumbnail Image.png
Description
Value-added models (VAMs) are used by many states to assess contributions of individual teachers and schools to students' academic growth. The generalized persistence VAM, one of the most flexible in the literature, estimates the ``value added'' by individual teachers to

Value-added models (VAMs) are used by many states to assess contributions of individual teachers and schools to students' academic growth. The generalized persistence VAM, one of the most flexible in the literature, estimates the ``value added'' by individual teachers to their students' current and future test scores by employing a mixed model with a longitudinal database of test scores. There is concern, however, that missing values that are common in the longitudinal student scores can bias value-added assessments, especially when the models serve as a basis for personnel decisions -- such as promoting or dismissing teachers -- as they are being used in some states. Certain types of missing data require that the VAM be modeled jointly with the missingness process in order to obtain unbiased parameter estimates. This dissertation studies two problems. First, the flexibility and multimembership random effects structure of the generalized persistence model lead to computational challenges that have limited the model's availability. To this point, no methods have been developed for scalable maximum likelihood estimation of the model. An EM algorithm to compute maximum likelihood estimates efficiently is developed, making use of the sparse structure of the random effects and error covariance matrices. The algorithm is implemented in the package GPvam in R statistical software. Illustrations of the gains in computational efficiency achieved by the estimation procedure are given. Furthermore, to address the presence of potentially nonignorable missing data, a flexible correlated random effects model is developed that extends the generalized persistence model to jointly model the test scores and the missingness process, allowing the process to depend on both students and teachers. The joint model gives the ability to test the sensitivity of the VAM to the presence of nonignorable missing data. Estimation of the model is challenging due to the non-hierarchical dependence structure and the resulting intractable high-dimensional integrals. Maximum likelihood estimation of the model is performed using an EM algorithm with fully exponential Laplace approximations for the E step. The methods are illustrated with data from university calculus classes and with data from standardized test scores from an urban school district.
Date Created
2012
Agent