Variation in dental morphology and bite force along the tooth row in anthropoids

151077-Thumbnail Image.png
Description
Modern primate diet is well-studied because of its considerable influence on multiple aspects of morphology, including the shape of the facial skeleton and teeth. It is well-established that differences in craniofacial form influence feeding abilities by altering the nature of

Modern primate diet is well-studied because of its considerable influence on multiple aspects of morphology, including the shape of the facial skeleton and teeth. It is well-established that differences in craniofacial form influence feeding abilities by altering the nature of bite force production. Tooth morphology, likewise, has been shown to vary with diet across primates, particularly in the details of occlusal form. It has also been suggested that tooth form (e.g., tooth root size and shape and crown size) reflects, in part, the demands of resisting the stresses generated during feeding. However, while they are central to our efforts to infer diet in past species, the relationships between bite force production, craniofacial morphology and tooth form are not well-established. The current study is separated into two parts. In Part I, the hypothesis that crown size and root surface area are adapted to resist masticatory stress is evaluated by testing whether these features show correlated variation along the tooth row in a taxonomically diverse sample of primates. To further explore the adaptive nature of this correlation, pair-wise comparisons between primates with mechanically resistant diets and closely-related species consuming less resistant foods are performed. If crown size and root surface area covary along the tooth row, past research suggests they may be related to bite force. To test this hypothesis, Part II examines the variation of these dental characteristics in comparison to theoretically-derived bite force patterns along the tooth row. Results suggest that patterns of maximum bite force magnitude along the tooth row are variable both within and between species, underscoring the importance of individual craniofacial variation on masticatory force production. Furthermore, it is suggested that some adaptations traditionally associated with high bite force production (i.e., facial orthognathy) may increase anterior biting force at the expense of posterior biting force. Taken together, results from the current study reveal that both tooth root and crown size vary in conjunction with the mechanical properties of diet and with bite force patterns along the tooth row in anthropoids.
Date Created
2012
Agent

Morphological integration and the anthropoid dentition

150416-Thumbnail Image.png
Description
The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint

The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to evolve independently of one another. Such linked characters are "constrained" and are expected to express covariation both within and among species. In this study, the pattern and magnitude of covariation among aspects of dental size and shape are investigated in anthropoid primates. Pleiotropy has been hypothesized to play a significant role in derivation of derived hominin morphologies. This study tests a series of hypotheses; including 1) that negative within- and among-species covariation exists between the anterior (incisors and canines) and postcanine teeth, 2) that covariation is strong and positive between the canines and incisors, 3) that there is a dimorphic pattern of within-species covariation and coevolution for characters of the canine honing complex, 4) that patterns of covariation are stable among anthropoids, and 5) that genetic constraints have been a strong bias on the diversification of anthropoid dental morphology. The study finds that patterns of variance-covariance are conserved among species. Despite these shared patterns of variance-covariance, dental diversification has frequently occurred along dimensions not aligned with the vector of genetic constraint. As regards the canine honing complex, there is no evidence for a difference in the pleiotropic organization or the coevolution of characters of the complex in males and females, which undermines arguments that the complex is selectively important only in males. Finally, there is no evidence for strong or negative pleiotropy between any dental characters, which falsifies hypotheses that predict such relationships between incisors and postcanine teeth or between the canines and the postcanine teeth.
Date Created
2011
Agent