Degassing processes at persistently active explosive volcanoes

153790-Thumbnail Image.png
Description
Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts,

Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior.

In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO2 fluxes with < 20 % error. Using the same protocol, I establish a record of the degassing patterns at Semeru volcano (Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt.

Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and then explosively disrupts it.
Date Created
2015
Agent

Sustainability of intercity transportation infrastructure: assessing the energy consumption and greenhouse gas emissions of high-speed rail in the U.S

150151-Thumbnail Image.png
Description
In the U.S., high-speed passenger rail has recently become an active political topic, with multiple corridors currently being considered through federal and state level initiatives. One frequently cited benefit of high-speed rail proposals is that they offer a transition to

In the U.S., high-speed passenger rail has recently become an active political topic, with multiple corridors currently being considered through federal and state level initiatives. One frequently cited benefit of high-speed rail proposals is that they offer a transition to a more sustainable transportation system with reduced greenhouse gas emissions and fossil energy consumption. This study investigates the feasibility of high-speed rail development as a long-term greenhouse gas emission mitigation strategy while considering major uncertainties in the technological and operational characteristics of intercity travel. First, I develop a general model for evaluating the emissions impact of intercity travel modes. This model incorporates aspects of life-cycle assessment and technological forecasting. The model is then used to compare future scenarios of energy and greenhouse gas emissions associated with the development of high-speed rail and other intercity travel technologies. Three specific rail corridors are evaluated and policy guidelines are developed regarding the emissions impacts of these investments. The results suggest prioritizing high-speed rail investments on short, dense corridors with fewer stops. Likewise, less emphasis should be placed on larger investments that require long construction times due to risks associated with payback of embedded emissions as competing technology improves.
Date Created
2011
Agent