Supramolecular Assembly of Redox Proteins for Ultralong-Range Biological Electron Transfer

189206-Thumbnail Image.png
Description
Exoelectrogenic organisms transfer electrons from their quinone pool to extracellular acceptors over m-scale distances through appendages known as “biological nanowires”. These structures have been described as cytochrome-rich membrane extensions or pili. However, the components and mechanisms of this long-range electron

Exoelectrogenic organisms transfer electrons from their quinone pool to extracellular acceptors over m-scale distances through appendages known as “biological nanowires”. These structures have been described as cytochrome-rich membrane extensions or pili. However, the components and mechanisms of this long-range electron transfer remain largely unknown. This dissertation describes supramolecular assembly of a tetraheme cytochrome into well-defined models of microbial nanowires and uses those structures to explore the mechanisms of ultra-long-range electron transfer. Chiral-induced-spin-selectivity through the cytochrome is also demonstrated. Nanowire extensions in Shewanella oneidensis have been hypothesized to transfer electrons via electron tunneling through proteinaceous structures that reinforce π-π stacking or through electron hopping via redox cofactors found along their lengths. To provide a model to evaluate the possibility of electron hopping along micron-scale distances, the first part of this dissertation describes the construction of a two-component, supramolecular nanostructure comprised of a small tetraheme cytochrome (STC) from Shewanella oneidensis fused to a peptide domain that self-assembles with a β-fibrillizing peptide. Structural and electrical characterization shows that the self-assembled protein fibers have dimensions relevant to understanding ultralong-range electron transfer and conduct electrons along their length via a cytochrome-mediated mechanism of electron transfer. The second part of this dissertations shows that a model three-component fiber construct based on charge complementary peptides and the redox protein can also be assembled. Structural and electrical characterization of the three-component structure also demonstrates desirable dimensions and electron conductivity along the length via a cytochrome-mediated mechanism. In vivo, it has been hypothesized that cytochromes in the outer surface conduit are spin-selective. However, cytochromes in the periplasm of Shewanella oneidensis have not been shown to be spin selective, and the physiological impact of the chiral-induced-spin-selectivity (CISS) effect on microbial electron transport remains unclear. In the third part of this dissertation, investigations via spin polarization and a spin-dependent conduction study show that STC is spin selective, suggesting that spin selectivity may be an important factor in the electron transport efficiency of exoelectrogens. In conclusion, this dissertation enables a better understanding of long-range electron transfer in bacterial nanowires and bioelectronic circuitry and offers suggestions for how to construct enhanced biosensors.
Date Created
2023
Agent

Bioinspired Electrocatalytic Hydrogen Production: Synthetic and Biological Approaches

155663-Thumbnail Image.png
Description
Development of efficient and renewable electrocatalytic systems is foundational to creation of effective means to produce solar fuels. Many redox enzymes are functional electrocatalysts when immobilized on an electrode, but long-term stability of isolated proteins limits use in applications. Thus

Development of efficient and renewable electrocatalytic systems is foundational to creation of effective means to produce solar fuels. Many redox enzymes are functional electrocatalysts when immobilized on an electrode, but long-term stability of isolated proteins limits use in applications. Thus there is interest in developing bio-inspired functional catalysts or electrocatalytic systems based on living organisms. This dissertation describes efforts to create both synthetic and biological electrochemical systems for electrocatalytic hydrogen production.

The first part of this dissertation describes the preparation of three different types of proton reduction catalysts. First, four bioinspired diiron complexes of the form (μ-SRS)Fe(CO)3[Fe(CO)(N-N)] for SRS = 1,2-benzenedithiolate (bdt) and 1,3-propanedithiolate (pdt) and N-N = 2,2’-bipyridine (bpy) and 2,2’-bypyrimidine (bpym), are described. Electrocatatlytic experiments show that although the byprimidinal complexes are not catalysts, the bipyridyl complexes produce hydrogen from acetic acid under reducing conditions. Second, three new mononuclear FeII carbonyl complexes of the form [Fe(CO)(bdt)(PPh2)2] in which P2 = bis-phosphine: 4,5-Bis(diphenylphosphino)- 9,9-dimethylxanthene (Xantphos), 1,2-Bis(diphenylphosphino)benzene (dppb), or cis- 1,2-Bis(diphenylphosphino)ethylene (dppv) are described. All are functional bio-inspired models of the distal Fe site of [FeFe]-hydrogenases. Of these, the Xanthphos complex is the most stable to redox reactions and active as an electrocatalyst. Third, a molybdenum catalyst based on the redox non-innocent PDI ligand framework is also shown to produce hydrogen in the presence of acid.

The second part of this dissertation describes creating functional interfaces between chemical and biological models at electrode surfaces to create electroactive systems. First, covalent tethering of the redox probe ferrocene to thiol-functionalized reduced graphene oxide is demonstrated. I demonstrate that this attachment is via the thiol functional groups. Second, I demonstrate the ability to use electricity in combination with light to drive production of hydrogen by the anaerobic, phototrophic microorganism Heliobacterium modesticaldum.
Date Created
2017
Agent

Non-traditional stable isotope variations: applications for biomedicine

149677-Thumbnail Image.png
Description
Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical

Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in biomedicine are relatively unexplored but have great potential scientific interest due to their essential nature in metabolism. Iron, a crucial element in biology, fractionates during biochemically relevant reactions. To test the extent of this fractionation in an important reaction process, equilibrium iron isotope fractionation during organic ligand exchange was determined. The results show that iron fractionates during organic ligand exchange, and that isotope enrichment increases as a function of the difference in binding constants between ligands. Additionally, to create a mass balance model for iron in a whole organism, iron isotope compositions in a whole mouse and in individual mouse organs were measured. The results indicate that fractionation occurs during transfer between individual organs, and that the whole organism was isotopically light compared with food. These two experiments advance our ability to interpret stable iron isotopes in biomedicine. Previous research demonstrated that calcium isotope variations in urine can be used as an indicator of changes in net bone mineral balance. In order to measure calcium isotopes by MC-ICP-MS, a chemical purification method was developed to quantitatively separate calcium from other elements in a biological matrix. Subsequently, this method was used to evaluate if calcium isotopes respond when organisms are subjected to conditions known to induce bone loss: 1) Rhesus monkeys were given an estrogen-suppressing drug; 2) Human patients underwent extended bed rest. In both studies, there were rapid, detectable changes in calcium isotope compositions from baseline - verifying that calcium isotopes can be used to rapidly detect changes in bone mineral balance. By characterizing iron isotope fractionation in biologically relevant processes and by demonstrating that calcium isotopes vary rapidly in response to bone loss, this thesis represents an important step in utilizing these isotope systems as a diagnostic and mechanistic tool to study the metabolism of these elements in vivo.
Date Created
2011
Agent