A methodology to sequentially identify cost effective energy efficiency measures: application to net zero school buildings

154682-Thumbnail Image.png
Description
Schools all around the country are improving the performance of their buildings by adopting high performance design principles. Higher levels of energy efficiency can pave the way for K-12 Schools to achieve net zero energy (NZE) conditions, a state where

Schools all around the country are improving the performance of their buildings by adopting high performance design principles. Higher levels of energy efficiency can pave the way for K-12 Schools to achieve net zero energy (NZE) conditions, a state where the energy generated by on-site renewable sources are sufficient to meet the cumulative annual energy demands of the facility. A key capability for the proliferation of Net Zero Energy Buildings (NZEB) is the need for a design methodology that identifies the optimum mix of energy efficient design features to be incorporated into the building. The design methodology should take into account the interaction effects of various energy efficiency measures as well as their associated costs so that life cycle cost can be minimized for the entire life span of the building.

This research aims at developing such a methodology for generating cost effective net zero energy solutions for school buildings. The Department of Energy (DOE) prototype primary school, meant to serve as the starting baseline, was modeled in the building energy simulation software eQUEST and made compliant with the requirement of ASHRAE 90.1-2007. Commonly used efficiency measures, for which credible initial cost and maintenance data were available, were selected as the parametric design set. An initial sensitivity analysis was conducted by using the Morris Method to rank the efficiency measures in terms of their importance and interaction strengths. A sequential search technique was adopted to search the solution space and identify combinations that lie near the Pareto-optimal front; this allowed various minimum cost design solutions to be identified corresponding to different energy savings levels.

Based on the results of this study, it was found that the cost optimal combination of measures over the 30 year analysis span resulted in an annual energy cost reduction of 47%, while net zero site energy conditions were achieved by the addition of a 435 kW photovoltaic generation system that covered 73% of the roof area. The simple payback period for the additional technology required to achieve NZE conditions was calculated to be 26.3 years and carried a 37.4% premium over the initial building construction cost. The study identifies future work in how to automate this computationally conservative search technique so that it can provide practical feedback to the building designer during all stages of the design process.
Date Created
2016
Agent

Statistical and graphical methods to determine importance and interaction of building design parameters to inform and support design decisions

154060-Thumbnail Image.png
Description
This research is aimed at studying the impact of building design parameters in terms of their importance and mutual interaction, and how these aspects vary across climates and HVAC system types. A methodology is proposed for such a study, by

This research is aimed at studying the impact of building design parameters in terms of their importance and mutual interaction, and how these aspects vary across climates and HVAC system types. A methodology is proposed for such a study, by examining the feasibility and use of two different statistical methods to derive all realistic ‘near-optimum’ solutions which might be lost using a simple optimization technique.

DOE prototype medium office building compliant with ASHRAE 90.1-2010 was selected for the analysis and four different HVAC systems in three US climates were simulated.

The interaction between building design parameters related to envelope characteristics and geometry (total of seven variables) has been studied using two different statistical methods, namely the ‘Morris method’ and ‘Predictive Learning via Rule Ensembles’.

Subsequently, a simple graphical tool based on sensitivity analysis has been developed and demonstrated to present the results from parametric simulations. This tool would be useful to better inform design decisions since it allows imposition of constraints on various parameters and visualize their interaction with other parameters.

It was observed that the Radiant system performed best in all three climates, followed by displacement ventilation system. However, it should be noted that this study did not deal with performance optimization of HVAC systems while there have been several studies which concluded that a VAV system with better controls can perform better than some of the newer HVAC technologies. In terms of building design parameters, it was observed that ‘Ceiling Height’, ‘Window-Wall Ratio’ and ‘Window Properties’ showed highest importance as well as interaction as compared to other parameters considered in this study, for all HVAC systems and climates.

Based on the results of this study, it is suggested to extend such analysis using statistical methods such as the ‘Morris method’, which require much fewer simulations to categorize parameters based on their importance and interaction strength. Usage of statistical methods like ‘Rule Ensembles’ or other simple visual tools to analyze simulation results for all combinations of parameters that show interaction would allow designers to make informed and superior design decisions while benefiting from large reduction in computational time.
Date Created
2015
Agent

Obtaining LEED credits directed towards healthy inpatient block

150940-Thumbnail Image.png
Description
ABSTRACT Leadership in Energy and Environmental Design (LEED) is a non-governmental organization of U.S. Green Building Council (USGBC) which promotes a sustainable built environment with its rating systems. One of the building segments which it considers is healthcare, where it

ABSTRACT Leadership in Energy and Environmental Design (LEED) is a non-governmental organization of U.S. Green Building Council (USGBC) which promotes a sustainable built environment with its rating systems. One of the building segments which it considers is healthcare, where it is a challenge to identify the most cost-effective variety of complex equipments, to meet the demand for 24/7 health care and diagnosis, and implement various energy efficient strategies in inpatient hospitals. According to their “End Use Monitoring” study, Hospital Energy Alliances (HEA), an initiative of U.S. Department of Energy (DOE), reducing plug load reduces hospital energy consumption. The aim of this thesis is to investigate the extent to which realistic changes to the building envelope, together with HVAC and operation schedules would allow LEED credits to be earned in the DOE–hospital prototype. The scope of this research is to specifically investigate the inpatient block where patient stays longer. However, to obtain LEED credits the percentage cost saving should be considered along with the end use monitoring. Several steps have been taken to identify the optimal set of the end use results by adopting the Whole Building Energy Simulation option of the LEED Energy & Atmosphere (EA) pre– requisite 2: Minimum Energy Performance. The initial step includes evaluating certain LEED criteria consistent with ASHRAE Standard 90.1–2007 with the constraint that hospital prototype is to be upgraded from Standard 2004 to Standard 2007. The simulation method stipulates energy conservation measures as well as utility costing to enhance the LEED credits. A series of simulations with different values of Light Power Density, Sizing Factors, Chiller Coefficient of Performance, Boiler Efficiency, Plug Loads and utility cost were run for a variety of end uses with the extreme climatic condition of Phoenix. These assessments are then compared and used as a framework for a proposed interactive design decision approach. As a result, a total of 19.4% energy savings and 20% utility cost savings were achieved by the building simulation tool, which refer to 5 and 7 LEED credits respectively. The study develops a proper framework for future evaluations intended to achieve more LEED points.
Date Created
2012
Agent

Associative design for building envelopes' sun control and shading devices

150908-Thumbnail Image.png
Description
In geographical locations with hot-arid climates, sun control in buildings is one primary problem to solve for the building envelope design. Today's technological advances in building science bring with them the opportunity to design dynamic façade systems for sun radiation

In geographical locations with hot-arid climates, sun control in buildings is one primary problem to solve for the building envelope design. Today's technological advances in building science bring with them the opportunity to design dynamic façade systems for sun radiation control and daylighting. Although dynamic systems can become an attractive visual element, they can be costly and challenging to maintain for building owners. Alternatively, fixed solar-shading systems can be designed to create dynamism in the façade of the building, while providing similar functionalities for sun control. The work presented in this project focuses on the use of a visual scripting editor for modeling software, Grasshopper, to develop a Solar Control Visual Script that evaluates building envelope surfaces with planar and non-uniform rational basis-spline (NURBS) forms and provides projections for fixed sun control systems. The design platform of Grasshopper allows individuals with no experience or prior computer coding education to build up programming-like capabilities; this feature permits users to discover new design possibilities within flexible frames that can contribute to the overall design being pursued, while also having an environmental response. The Solar Control Visual Script provides minimum sizing geometries that achieve shading in openings at a particular date and time of the year. The model for this method of analysis makes use of three components to derive the appropriate values for the projections of shading geometries: typical meteorological year (TMY) data, irradiation isotropic equations and shading profile angles equations for vertical and tilted surfaces. Providing an automatic visual of generated geometries uncovers the opportunity to test several model forms and reiterates the analysis when modifying control parameters. By employing building science as a set of environmental parameters, the design outcome bears a dynamic form that responds to natural force conditions. The optimized results promote an efficient environmental design solution for sun control as an integral alternative into the building envelope.
Date Created
2012
Agent

Research and development of a small - scale adsorption cooling system

150310-Thumbnail Image.png
Description
The world is grappling with two serious issues related to energy and climate change. The use of solar energy is receiving much attention due to its potential as one of the solutions. Air conditioning is particularly attractive as a solar

The world is grappling with two serious issues related to energy and climate change. The use of solar energy is receiving much attention due to its potential as one of the solutions. Air conditioning is particularly attractive as a solar energy application because of the near coincidence of peak cooling loads with the available solar power. Recently, researchers have started serious discussions of using adsorptive processes for refrigeration and heat pumps. There is some success for the >100 ton adsorption systems but none exists in the <10 ton size range required for residential air conditioning. There are myriad reasons for the lack of small-scale systems such as low Coefficient of Performance (COP), high capital cost, scalability, and limited performance data. A numerical model to simulate an adsorption system was developed and its performance was compared with similar thermal-powered systems. Results showed that both the adsorption and absorption systems provide equal cooling capacity for a driving temperature range of 70-120 ºC, but the adsorption system is the only system to deliver cooling at temperatures below 65 ºC. Additionally, the absorption and desiccant systems provide better COP at low temperatures, but the COP's of the three systems converge at higher regeneration temperatures. To further investigate the viability of solar-powered heat pump systems, an hourly building load simulation was developed for a single-family house in the Phoenix metropolitan area. Thermal as well as economic performance comparison was conducted for adsorption, absorption, and solar photovoltaic (PV) powered vapor compression systems for a range of solar collector area and storage capacity. The results showed that for a small collector area, solar PV is more cost-effective whereas adsorption is better than absorption for larger collector area. The optimum solar collector area and the storage size were determined for each type of solar system. As part of this dissertation work, a small-scale proof-of-concept prototype of the adsorption system was assembled using some novel heat transfer enhancement strategies. Activated carbon and butane was chosen as the adsorbent-refrigerant pair. It was found that a COP of 0.12 and a cooling capacity of 89.6 W can be achieved.
Date Created
2011
Agent

Spreadsheet based tool for building energy codes: analysis, comparison and compliance

Description
Buildings in the United States, account for over 68 percent of electricity consumed, 39 percent of total energy use, and 38 percent of the carbon dioxide emissions. By the year 2035, about 75% of the U.S. building sector will be

Buildings in the United States, account for over 68 percent of electricity consumed, 39 percent of total energy use, and 38 percent of the carbon dioxide emissions. By the year 2035, about 75% of the U.S. building sector will be either new or renovated. The energy efficiency requirements of current building codes would have a significant impact on future energy use, hence, one of the most widely accepted solutions to slowing the growth rate of GHG emissions and then reversing it involves a stringent adoption of building energy codes. A large number of building energy codes exist and a large number of studies which state the energy savings possible through code compliance. However, most codes are difficult to comprehend and require an extensive understanding of the code, the compliance paths, all mandatory and prescriptive requirements as well as the strategy to convert the same to energy model inputs. This paper provides a simplified solution for the entire process by providing an easy to use interface for code compliance and energy simulation through a spreadsheet based tool, the ECCO or the Energy Code COmpliance Tool. This tool provides a platform for a more detailed analysis of building codes as applicable to each and every individual building in each climate zone. It also facilitates quick building energy simulation to determine energy savings achieved through code compliance. This process is highly beneficial not only for code compliance, but also for identifying parameters which can be improved for energy efficiency. Code compliance is simplified through a series of parametric runs which generates the minimally compliant baseline building and 30% beyond code building. This tool is seen as an effective solution for architects and engineers for an initial level analysis as well as for jurisdictions as a front-end diagnostic check for code compliance.  
Date Created
2011
Agent

Investigation of CO2 tracer gas-based calibration of multi-zone airflow models

149636-Thumbnail Image.png
Description
The modeling and simulation of airflow dynamics in buildings has many applications including indoor air quality and ventilation analysis, contaminant dispersion prediction, and the calculation of personal occupant exposure. Multi-zone airflow model software programs provide such capabilities in a manner

The modeling and simulation of airflow dynamics in buildings has many applications including indoor air quality and ventilation analysis, contaminant dispersion prediction, and the calculation of personal occupant exposure. Multi-zone airflow model software programs provide such capabilities in a manner that is practical for whole building analysis. This research addresses the need for calibration methodologies to improve the prediction accuracy of multi-zone software programs. Of particular interest is accurate modeling of airflow dynamics in response to extraordinary events, i.e. chemical and biological attacks. This research developed and explored a candidate calibration methodology which utilizes tracer gas (e.g., CO2) data. A key concept behind this research was that calibration of airflow models is a highly over-parameterized problem and that some form of model reduction is imperative. Model reduction was achieved by proposing the concept of macro-zones, i.e. groups of rooms that can be combined into one zone for the purposes of predicting or studying dynamic airflow behavior under different types of stimuli. The proposed calibration methodology consists of five steps: (i) develop a "somewhat" realistic or partially calibrated multi-zone model of a building so that the subsequent steps yield meaningful results, (ii) perform an airflow-based sensitivity analysis to determine influential system drivers, (iii) perform a tracer gas-based sensitivity analysis to identify macro-zones for model reduction, (iv) release CO2 in the building and measure tracer gas concentrations in at least one room within each macro-zone (some replication in other rooms is highly desirable) and use these measurements to further calibrate aggregate flow parameters of macro-zone flow elements so as to improve the model fit, and (v) evaluate model adequacy of the updated model based on some metric. The proposed methodology was first evaluated with a synthetic building and subsequently refined using actual measured airflows and CO2 concentrations for a real building. The airflow dynamics of the buildings analyzed were found to be dominated by the HVAC system. In such buildings, rectifying differences between measured and predicted tracer gas behavior should focus on factors impacting room air change rates first and flow parameter assumptions between zones second.
Date Created
2011
Agent