On code design for interference channels

154022-Thumbnail Image.png
Description
There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for

There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed.

Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.
Date Created
2015
Agent

Multiple detection and tracking in complex time-varying environments

153310-Thumbnail Image.png
Description
This work considers the problem of multiple detection and tracking in two complex time-varying environments, urban terrain and underwater. Tracking multiple radar targets in urban environments is rst investigated by exploiting multipath signal returns, wideband underwater acoustic (UWA) communications channels

This work considers the problem of multiple detection and tracking in two complex time-varying environments, urban terrain and underwater. Tracking multiple radar targets in urban environments is rst investigated by exploiting multipath signal returns, wideband underwater acoustic (UWA) communications channels are estimated using adaptive learning methods, and multiple UWA communications users are detected by designing the transmit signal to match the environment. For the urban environment, a multi-target tracking algorithm is proposed that integrates multipath-to-measurement association and the probability hypothesis density method implemented using particle filtering. The algorithm is designed to track an unknown time-varying number of targets by extracting information from multiple measurements due to multipath returns in the urban terrain. The path likelihood probability is calculated by considering associations between measurements and multipath returns, and an adaptive clustering algorithm is used to estimate the number of target and their corresponding parameters. The performance of the proposed algorithm is demonstrated for different multiple target scenarios and evaluated using the optimal subpattern assignment metric. The underwater environment provides a very challenging communication channel due to its highly time-varying nature, resulting in large distortions due to multipath and Doppler-scaling, and frequency-dependent path loss. A model-based wideband UWA channel estimation algorithm is first proposed to estimate the channel support and the wideband spreading function coefficients. A nonlinear frequency modulated signaling scheme is proposed that is matched to the wideband characteristics of the underwater environment. Constraints on the signal parameters are derived to optimally reduce multiple access interference and the UWA channel effects. The signaling scheme is compared to a code division multiple access (CDMA) scheme to demonstrate its improved bit error rate performance. The overall multi-user communication system performance is finally analyzed by first estimating the UWA channel and then designing the signaling scheme for multiple communications users.
Date Created
2014
Agent

Fisheye camera calibration and applications

153270-Thumbnail Image.png
Description
Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback,

Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback, they are being used increasingly in many applications of computer vision,

robotics, reconnaissance, astrophotography, surveillance and automotive applications.

The images captured from such cameras can be corrected for their distortion if the

cameras are calibrated and the distortion function is determined. Calibration also allows

fisheye cameras to be used in tasks involving metric scene measurement, metric

scene reconstruction and other simultaneous localization and mapping (SLAM) algorithms.

This thesis presents a calibration toolbox (FisheyeCDC Toolbox) that implements a collection of some of the most widely used techniques for calibration of fisheye cameras under one package. This enables an inexperienced user to calibrate his/her own camera without the need for a theoretical understanding about computer vision and camera calibration. This thesis also explores some of the applications of calibration such as distortion correction and 3D reconstruction.
Date Created
2014
Agent

Spatial and multi-temporal visual change detection with application to SAR image analysis

153241-Thumbnail Image.png
Description
Thousands of high-resolution images are generated each day. Detecting and analyzing variations in these images are key steps in image understanding. This work focuses on spatial and multitemporal

visual change detection and its applications in multi-temporal synthetic aperture radar (SAR) images.

The

Thousands of high-resolution images are generated each day. Detecting and analyzing variations in these images are key steps in image understanding. This work focuses on spatial and multitemporal

visual change detection and its applications in multi-temporal synthetic aperture radar (SAR) images.

The Canny edge detector is one of the most widely-used edge detection algorithms due to its superior performance in terms of SNR and edge localization and only one response to a single edge. In this work, we propose a mechanism to implement the Canny algorithm at the block level without any loss in edge detection performance as compared to the original frame-level Canny algorithm. The resulting block-based algorithm has significantly reduced memory requirements and can achieve a significantly reduced latency. Furthermore, the proposed algorithm can be easily integrated with other block-based image processing systems. In addition, quantitative evaluations and subjective tests show that the edge detection performance of the proposed algorithm is better than the original frame-based algorithm, especially when noise is present in the images.

In the context of multi-temporal SAR images for earth monitoring applications, one critical issue is the detection of changes occurring after a natural or anthropic disaster. In this work, we propose a novel similarity measure for automatic change detection using a pair of SAR images

acquired at different times and apply it in both the spatial and wavelet domains. This measure is based on the evolution of the local statistics of the image between two dates. The local statistics are modeled as a Gaussian Mixture Model (GMM), which is more suitable and flexible to approximate the local distribution of the SAR image with distinct land-cover typologies. Tests on real datasets show that the proposed detectors outperform existing methods in terms of the quality of the similarity maps, which are assessed using the receiver operating characteristic (ROC) curves, and in terms of the total error rates of the final change detection maps. Furthermore, we proposed a new

similarity measure for automatic change detection based on a divisive normalization transform in order to reduce the computation complexity. Tests show that our proposed DNT-based change detector

exhibits competitive detection performance while achieving lower computational complexity as compared to previously suggested methods.
Date Created
2014
Agent

Biology-based matched signal processing and physics-based modeling for improved detection

153209-Thumbnail Image.png
Description
Peptide microarrays have been used in molecular biology to profile immune responses and develop diagnostic tools. When the microarrays are printed with random peptide sequences, they can be used to identify antigen antibody binding patterns or immunosignatures. In this

Peptide microarrays have been used in molecular biology to profile immune responses and develop diagnostic tools. When the microarrays are printed with random peptide sequences, they can be used to identify antigen antibody binding patterns or immunosignatures. In this thesis, an advanced signal processing method is proposed to estimate epitope antigen subsequences as well as identify mimotope antigen subsequences that mimic the structure of epitopes from random-sequence peptide microarrays. The method first maps peptide sequences to linear expansions of highly-localized one-dimensional (1-D) time-varying signals and uses a time-frequency processing technique to detect recurring patterns in subsequences. This technique is matched to the aforementioned mapping scheme, and it allows for an inherent analysis on how substitutions in the subsequences can affect antibody binding strength. The performance of the proposed method is demonstrated by estimating epitopes and identifying potential mimotopes for eight monoclonal antibody samples.

The proposed mapping is generalized to express information on a protein's sequence location, structure and function onto a highly localized three-dimensional (3-D) Gaussian waveform. In particular, as analysis of protein homology has shown that incorporating different kinds of information into an alignment process can yield more robust alignment results, a pairwise protein structure alignment method is proposed based on a joint similarity measure of multiple mapped protein attributes. The 3-D mapping allocates protein properties into distinct regions in the time-frequency plane in order to simplify the alignment process by including all relevant information into a single, highly customizable waveform. Simulations demonstrate the improved performance of the joint alignment approach to infer relationships between proteins, and they provide information on mutations that cause changes to both the sequence and structure of a protein.

In addition to the biology-based signal processing methods, a statistical method is considered that uses a physics-based model to improve processing performance. In particular, an externally developed physics-based model for sea clutter is examined when detecting a low radar cross-section target in heavy sea clutter. This novel model includes a process that generates random dynamic sea clutter based on the governing physics of water gravity and capillary waves and a finite-difference time-domain electromagnetics simulation process based on Maxwell's equations propagating the radar signal. A subspace clutter suppression detector is applied to remove dominant clutter eigenmodes, and its improved performance over matched filtering is demonstrated using simulations.
Date Created
2014
Agent

Gain and loss factor for conical horns, and impact of ground plane edge diffractions on radiation patterns of uncoated and coated circular aperture antennas

153050-Thumbnail Image.png
Description
Horn antennas have been used for over a hundred years. They have a wide variety of uses where they are a basic and popular microwave antenna for many practical applications, such as feed elements for communication reflector dishes on satellite

Horn antennas have been used for over a hundred years. They have a wide variety of uses where they are a basic and popular microwave antenna for many practical applications, such as feed elements for communication reflector dishes on satellite or point-to-point relay antennas. They are also widely utilized as gain standards for calibration and gain measurement of other antennas.

The gain and loss factor of conical horns are revisited in this dissertation based on

spherical and quadratic aperture phase distributions. The gain is compared with published classical data in an attempt to confirm their validity and accuracy and to determine whether they were derived based on spherical or quadratic aperture phase distributions. In this work, it is demonstrated that the gain of a conical horn antenna obtained by using a spherical phase distribution is in close agreement with published classical data. Moreover, more accurate expressions for the loss factor, to account for amplitude and phase tapers over the horn aperture, are derived. New formulas for the design of optimum gain conical horns, based on the more accurate spherical aperture phase distribution, are derived.

To better understand the impact of edge diffractions on aperture antenna performance, an extensive investigation of the edge diffractions impact is undertaken in this dissertation for commercial aperture antennas. The impact of finite uncoated and coated PEC ground plane edge diffractions on the amplitude patterns in the principal planes of circular apertures is intensively examined. Similarly, aperture edge diffractions of aperture antennas without ground planes are examined. Computational results obtained by the analytical model are compared with experimental and HFSS-simulated results for all cases studied. In addition, the impact of the ground plane size, coating thickness, and relative permittivity of the dielectric layer on the radiation amplitude in the back region has been examined.

This investigation indicates that the edge diffractions do impact the main forward lobe pattern, especially in the E plane. Their most significant contribution appears in far side and back lobes. This work demonstrates that the finite edge contributors must be considered to obtain more accurate amplitude patterns of aperture antennas.
Date Created
2014
Agent

Performance models for LTE-advanced random access

152872-Thumbnail Image.png
Description
LTE-Advanced networks employ random access based on preambles

transmitted according to multi-channel slotted Aloha principles. The

random access is controlled through a limit W on the number of

transmission attempts and a timeout period for uniform backoff after a

collision. We model the LTE-Advanced

LTE-Advanced networks employ random access based on preambles

transmitted according to multi-channel slotted Aloha principles. The

random access is controlled through a limit W on the number of

transmission attempts and a timeout period for uniform backoff after a

collision. We model the LTE-Advanced random access system by formulating

the equilibrium condition for the ratio of the number of requests

successful within the permitted number of transmission attempts to those

successful in one attempt. We prove that for W≤8 there is only one

equilibrium operating point and for W≥9 there are three operating

points if the request load ρ is between load boundaries ρ1

and ρ2. We analytically identify these load boundaries as well as

the corresponding system operating points. We analyze the throughput and

delay of successful requests at the operating points and validate the

analytical results through simulations. Further, we generalize the

results using a steady-state equilibrium based approach and develop

models for single-channel and multi-channel systems, incorporating the

barring probability PB. Ultimately, we identify the de-correlating

effect of parameters O, PB, and Tomax and introduce the

Poissonization effect due to the backlogged requests in a slot. We

investigate the impact of Poissonization on different traffic and

conclude this thesis.
Date Created
2014
Agent

Texture structure analysis

152770-Thumbnail Image.png
Description
Texture analysis plays an important role in applications like automated pattern inspection, image and video compression, content-based image retrieval, remote-sensing, medical imaging and document processing, to name a few. Texture Structure Analysis is the process of studying the structure present

Texture analysis plays an important role in applications like automated pattern inspection, image and video compression, content-based image retrieval, remote-sensing, medical imaging and document processing, to name a few. Texture Structure Analysis is the process of studying the structure present in the textures. This structure can be expressed in terms of perceived regularity. Our human visual system (HVS) uses the perceived regularity as one of the important pre-attentive cues in low-level image understanding. Similar to the HVS, image processing and computer vision systems can make fast and efficient decisions if they can quantify this regularity automatically. In this work, the problem of quantifying the degree of perceived regularity when looking at an arbitrary texture is introduced and addressed. One key contribution of this work is in proposing an objective no-reference perceptual texture regularity metric based on visual saliency. Other key contributions include an adaptive texture synthesis method based on texture regularity, and a low-complexity reduced-reference visual quality metric for assessing the quality of synthesized textures. In order to use the best performing visual attention model on textures, the performance of the most popular visual attention models to predict the visual saliency on textures is evaluated. Since there is no publicly available database with ground-truth saliency maps on images with exclusive texture content, a new eye-tracking database is systematically built. Using the Visual Saliency Map (VSM) generated by the best visual attention model, the proposed texture regularity metric is computed. The proposed metric is based on the observation that VSM characteristics differ between textures of differing regularity. The proposed texture regularity metric is based on two texture regularity scores, namely a textural similarity score and a spatial distribution score. In order to evaluate the performance of the proposed regularity metric, a texture regularity database called RegTEX, is built as a part of this work. It is shown through subjective testing that the proposed metric has a strong correlation with the Mean Opinion Score (MOS) for the perceived regularity of textures. The proposed method is also shown to be robust to geometric and photometric transformations and outperforms some of the popular texture regularity metrics in predicting the perceived regularity. The impact of the proposed metric to improve the performance of many image-processing applications is also presented. The influence of the perceived texture regularity on the perceptual quality of synthesized textures is demonstrated through building a synthesized textures database named SynTEX. It is shown through subjective testing that textures with different degrees of perceived regularities exhibit different degrees of vulnerability to artifacts resulting from different texture synthesis approaches. This work also proposes an algorithm for adaptively selecting the appropriate texture synthesis method based on the perceived regularity of the original texture. A reduced-reference texture quality metric for texture synthesis is also proposed as part of this work. The metric is based on the change in perceived regularity and the change in perceived granularity between the original and the synthesized textures. The perceived granularity is quantified through a new granularity metric that is proposed in this work. It is shown through subjective testing that the proposed quality metric, using just 2 parameters, has a strong correlation with the MOS for the fidelity of synthesized textures and outperforms the state-of-the-art full-reference quality metrics on 3 different texture databases. Finally, the ability of the proposed regularity metric in predicting the perceived degradation of textures due to compression and blur artifacts is also established.
Date Created
2014
Agent

Radar tracking waveform design in continuous space and optimization selection using differential evolution

152757-Thumbnail Image.png
Description
Waveform design that allows for a wide variety of frequency-modulation (FM) has proven benefits. However, dictionary based optimization is limited and gradient search methods are often intractable. A new method is proposed using differential evolution to design waveforms with instantaneous

Waveform design that allows for a wide variety of frequency-modulation (FM) has proven benefits. However, dictionary based optimization is limited and gradient search methods are often intractable. A new method is proposed using differential evolution to design waveforms with instantaneous frequencies (IFs) with cubic FM functions whose coefficients are constrained to the surface of the three dimensional unit sphere. Cubic IF functions subsume well-known IF functions such as linear, quadratic monomial, and cubic monomial IF functions. In addition, all nonlinear IF functions sufficiently approximated by a third order Taylor series over the unit time sequence can be represented in this space. Analog methods for generating polynomial IF waveforms are well established allowing for practical implementation in real world systems. By sufficiently constraining the search space to these waveforms of interest, alternative optimization methods such as differential evolution can be used to optimize tracking performance in a variety of radar environments. While simplified tracking models and finite waveform dictionaries have information theoretic results, continuous waveform design in high SNR, narrowband, cluttered environments is explored.
Date Created
2014
Agent

Large-scale wireless networks: stochastic geometry and ordering

152475-Thumbnail Image.png
Description
Recently, the location of the nodes in wireless networks has been modeled as point processes. In this dissertation, various scenarios of wireless communications in large-scale networks modeled as point processes are considered. The first part of the dissertation considers signal

Recently, the location of the nodes in wireless networks has been modeled as point processes. In this dissertation, various scenarios of wireless communications in large-scale networks modeled as point processes are considered. The first part of the dissertation considers signal reception and detection problems with symmetric alpha stable noise which is from an interfering network modeled as a Poisson point process. For the signal reception problem, the performance of space-time coding (STC) over fading channels with alpha stable noise is studied. We derive pairwise error probability (PEP) of orthogonal STCs. For general STCs, we propose a maximum-likelihood (ML) receiver, and its approximation. The resulting asymptotically optimal receiver (AOR) does not depend on noise parameters and is computationally simple, and close to the ML performance. Then, signal detection in coexisting wireless sensor networks (WSNs) is considered. We define a binary hypothesis testing problem for the signal detection in coexisting WSNs. For the problem, we introduce the ML detector and simpler alternatives. The proposed mixed-fractional lower order moment (FLOM) detector is computationally simple and close to the ML performance. Stochastic orders are binary relations defined on probability. The second part of the dissertation introduces stochastic ordering of interferences in large-scale networks modeled as point processes. Since closed-form results for the interference distributions for such networks are only available in limited cases, it is of interest to compare network interferences using stochastic. In this dissertation, conditions on the fading distribution and path-loss model are given to establish stochastic ordering between interferences. Moreover, Laplace functional (LF) ordering is defined between point processes and applied for comparing interference. Then, the LF orderings of general classes of point processes are introduced. It is also shown that the LF ordering is preserved when independent operations such as marking, thinning, random translation, and superposition are applied. The LF ordering of point processes is a useful tool for comparing spatial deployments of wireless networks and can be used to establish comparisons of several performance metrics such as coverage probability, achievable rate, and resource allocation even when closed form expressions for such metrics are unavailable.
Date Created
2014
Agent