The Effects of the PsaL Calcium Binding on the Oligomeric and Spectroscopic Properties in Synechocystis sp. PCC 6803

148004-Thumbnail Image.png
Description

In oxygenic photosynthesis, conversion of solar energy to chemical energy is catalyzed by the<br/>pigment-protein complexes Photosystem II (PSII) and Photosystem I (PSI) embedded within the<br/>thylakoid membrane of photoautotrophs. The function of these pigment-protein complexes are<br/>conserved between all photoautotrophs, however, the

In oxygenic photosynthesis, conversion of solar energy to chemical energy is catalyzed by the<br/>pigment-protein complexes Photosystem II (PSII) and Photosystem I (PSI) embedded within the<br/>thylakoid membrane of photoautotrophs. The function of these pigment-protein complexes are<br/>conserved between all photoautotrophs, however, the oligomeric structure, as well as the<br/>spectroscopic properties of the PSI complex, differ. In early evolving photoautotrophs, PSI<br/>exists in a trimeric organization, but in later evolving species this was lost and PSI exists solely<br/>as a monomer. While the reasons for a change in oligomerization are not fully understood, one<br/>of the 11 subunits within cyanobacterial PSI, PsaL, is thought to be involved in trimerization<br/>through the coordination of a calcium ion in an adjacent monomer. Recently published<br/>structures have demonstrated that PSI complexes are capable of trimerization without<br/>coordinating the calcium ion within PsaL.<br/>5 Here we explore the role the calcium ion plays in both<br/>the oligomeric and spectroscopic properties in PSI isolated from Synechocystis sp. PCC 6803.

Date Created
2021-05
Agent