THE BLUE MOUND CHERT INVESTIGATING A TOPOGRAPHIC ANOMALY IN SOUTHERN WISCONSIN

137596-Thumbnail Image.png
Description
Blue Mound State Park, located in the state of Wisconsin (USA), is host to a topographic anomaly known as Blue Mound. This mound is the western of the two mounds that make up the park, and it marks the highest

Blue Mound State Park, located in the state of Wisconsin (USA), is host to a topographic anomaly known as Blue Mound. This mound is the western of the two mounds that make up the park, and it marks the highest elevation in southern Wisconsin. Unlike its eastern sibling, Blue Mound possesses an unusual chert cap that may have protected it from erosion, thus preserving its stratigraphic integrity. Although Blue Mound's unique chert armor was noted in 1927 by the Wisconsin Geological and Natural History Survey, no published work has satisfactorily explained its origin. As little was known about the formation of cherts until the mid-to-late 1900s, the Blue Mound cap was classified merely as a Silurian dolostone into which chert had somehow become integrated (Steidtmann). However, the published observations of the Blue Mound chert do not necessarily match with the classification granted by the Wisconsin Geological and Natural History Survey, nor were any convincing interpretations offered regarding the presence of the chert. Since 1927, significant progress in the field of sedimentology has been achieved. There now exists knowledge that may fill the gaps between observation and interpretation in the Blue Mound survey. The observations in the 1927 bulletin correspond with modern notions of a paleokarst chert breccia, which forms a chert rubble or residuum. A chert breccia is formed when existing clasts, or pieces, of chert become cemented together by further chert deposition (Kolodny, Chaussidon and Katz). This can form large boulders of chert rubble that resist erosion. Accumulation of chert rubble has been documented to form along old weathering surfaces as an insoluble residue in environments similar to Blue Mound (Kolodny, Chaussidon and Katz). The purpose of this investigation was to verify the observations within the 1927 survey of the Blue Mound chert, and determine through field observations and sample study if the Blue Mound chert fits the model of a paleokarst chert breccia.
Date Created
2013-05
Agent

Wind-driven modification of small bedforms in Gusev Crater, Mars

154973-Thumbnail Image.png
Description
ABSTRACT

The Spirit landing site in Gusev Crater has been imaged by the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) camera more than thirty times since 2006. The breadth of this image set allowed a study of changes

ABSTRACT

The Spirit landing site in Gusev Crater has been imaged by the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) camera more than thirty times since 2006. The breadth of this image set allowed a study of changes to surface features, covering four Mars years.

Small fields of bedforms comprised of dark material, and dark dust devil tracks are among the features revealed in the images. The bedforms are constrained within craters on the plains, and unconstrained in depressions less than 200m wide within the topography of the Columbia Hills, a ~120m-high structure in center of Gusev. Dust devil tracks appear in many images of the bedforms.

Within the Columbia Hills, three bedform fields approximately 180m2 and composed of fine dark basaltic sand were studied, using five HiRISE images taken from 2006 to 2014. Both bedform crests and the dust devil tracks superimposed on them were evaluated for change to azimuth and length, and for correlation between the features. The linear to slightly sinuous transverse crests ranging from less than 1m to 113m in length and two to three meters in wavelength, are primary bedforms. During the study they shifted as much as 33 degrees in azimuth, and individual crests moved on the surface as much as 0.75m. The greatest changes corresponded to a global dust storm in 2007. Average crest movement was documented at the rate of 0.25m per year. Rather than moving progressively, the crests eventually returned to near their original orientation after the storm. The dust devil tracks, reflecting a more complex wind regime, including vortex development during diurnal heating, maintained predominantly NW-SE orientations but also reflected the effects of the storm.

The observed modifications were neither progressive, nor strictly seasonal. The apparent stability of the bedform geometry over four seasons supports the predictions of the Mars Regional Atmospheric Modeling System (MRAMS): low speed (1-7.5 ms-1), daily alternating winds of relatively equal force. Crest profiles were found to be nearly symmetrical, without slipfaces to indicate a preferential wind direction; this finding also is supported by the MRAMS model.
Date Created
2016
Agent

Identifying the Origin and Evolution of Groundwater in the Salt River Valley and Applications for Better Water Well Design: A Stable Isotopic Approach

152162-Thumbnail Image.png
Description
Stable isotopes were measured in the groundwaters of the Salt River Valley basin in central Arizona to explore the utility of stable isotopes for sourcing recharge waters and engineering better well designs. Delta values for the sampled groundwaters range from

Stable isotopes were measured in the groundwaters of the Salt River Valley basin in central Arizona to explore the utility of stable isotopes for sourcing recharge waters and engineering better well designs. Delta values for the sampled groundwaters range from -7.6‰ to -10‰ in 18O and -60‰ to -91‰ in D and display displacements off the global meteoric water line indicative of surficial evaporation during river transport into the area. Groundwater in the basin is all derived from top-down river recharge; there is no evidence of ancient playa waters even in the playa deposits. The Salt and Verde Rivers are the dominant source of groundwater for the East Salt River valley- the Agua Fria River also contributes significantly to the West Salt River Valley. Groundwater isotopic compositions are generally more depleted in 18O and D with depth, indicating past recharge in cooler climates, and vary within subsurface aquifer layers as sampled during well drilling. When isotopic data were evaluated together with geologic and chemical analyses and compared with data from the final well production water it was often possible to identify: 1) which horizons are the primary producers of groundwater flow and how that might change with time, 2) the chemical exchange of cations and anions via water-rock interaction during top-down mixing of recharge water with older waters, 3) how much well production might be lost if arsenic-contributing horizons were sealed off, and 4) the extent to which replacement wells tap different subsurface water sources. In addition to identifying sources of recharge, stable isotopes offer a new and powerful approach for engineering better and more productive water wells.
Date Created
2010
Agent