Characterization of Carbon Molecular Sieve Membranes in the Separation of Propylene and Propane Gases

137225-Thumbnail Image.png
Description
A Carbon Molecular Sieve (CMS) membrane, in order to test separation of propylene and propane gases, was subjected to increases in feed pressure, varied propylene feed composition, and temperature changes to determine how these factors affect permeance and selectivity.

A Carbon Molecular Sieve (CMS) membrane, in order to test separation of propylene and propane gases, was subjected to increases in feed pressure, varied propylene feed composition, and temperature changes to determine how these factors affect permeance and selectivity. This membrane was prepared on a support made of α-alumina and γ-alumina supports. Feed pressure was increased between 30 and 100psi, and propylene and propane permeance decreased, as did the selectivity. Propylene feed composition increases resulted in an order of magnitude increase in propane permeance, but a decrease in propylene permeance, and a decrease in selectivity. Increases in temperature resulted in increases of propylene and propane permeance, but a decrease in selectivity.
Date Created
2014-05
Agent

Synthesis and characterization of microporous inorganic membranes for propylene/propane separation

153370-Thumbnail Image.png
Description
Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H6/C3H8 separation properties of MFI zeolite membrane and CMS membrane.

MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H6/C3H8 mixture separation.

CMS membranes were synthesized by coating/pyrolysis method on mesoporous γ-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N2 and C3H6 and C3H6/C3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores.

CMS membranes demonstrate excellent C3H6/C3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.
Date Created
2015
Agent