Fundamental Limits of Gaussian Communication Networks in the Presence of Intelligent Jammers

157976-Thumbnail Image.png
Description
The open nature of the wireless communication medium makes it inherently vulnerable to an active attack, wherein a malicious adversary (or jammer) transmits into the medium to disrupt the operation of the legitimate users. Therefore, developing techniques to manage the

The open nature of the wireless communication medium makes it inherently vulnerable to an active attack, wherein a malicious adversary (or jammer) transmits into the medium to disrupt the operation of the legitimate users. Therefore, developing techniques to manage the presence of a jammer and to characterize the effect of an attacker on the fundamental limits of wireless communication networks is important. This dissertation studies various Gaussian communication networks in the presence of such an adversarial jammer.

First of all, a standard Gaussian channel is considered in the presence of a jammer, known as a Gaussian arbitrarily-varying channel, but with list-decoding at the receiver. The receiver decodes a list of messages, instead of only one message, with the goal of the correct message being an element of the list. The capacity is characterized, and it is shown that under some transmitter's power constraints the adversary is able to suspend the communication between the legitimate users and make the capacity zero.

Next, generalized packing lemmas are introduced for Gaussian adversarial channels to achieve the capacity bounds for three Gaussian multi-user channels in the presence of adversarial jammers. Inner and outer bounds on the capacity regions of Gaussian multiple-access channels, Gaussian broadcast channels, and Gaussian interference channels are derived in the presence of malicious jammers. For the Gaussian multiple-access channels with jammer, the capacity bounds coincide. In this dissertation, the adversaries can send any arbitrary signals to the channel while none of the transmitter and the receiver knows the adversarial signals' distribution.

Finally, the capacity of the standard point-to-point Gaussian fading channel in the presence of one jammer is investigated under multiple scenarios of channel state information availability, which is the knowledge of exact fading coefficients. The channel state information is always partially or fully known at the receiver to decode the message while the transmitter or the adversary may or may not have access to this information. Here, the adversary model is the same as the previous cases with no knowledge about the user's transmitted signal except possibly the knowledge of the fading path.
Date Created
2019
Agent

Distributed Reception in the Presence of Gaussian Interference

157817-Thumbnail Image.png
Description
An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and

An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and structured (lattice coding) strategies are studied towards this purpose for a certain adaptable system model. Asymptotic performances of these strategies and algorithms to compute them are developed. A jointly-compressed lattice code with proper configuration performs best of all strategies investigated.
Date Created
2019
Agent

Numerical computation of Wishart eigenvalue distributions for multistatic radar detection

157701-Thumbnail Image.png
Description
Eigenvalues of the Gram matrix formed from received data frequently appear in sufficient detection statistics for multi-channel detection with Generalized Likelihood Ratio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in which the null hypothesis is

Eigenvalues of the Gram matrix formed from received data frequently appear in sufficient detection statistics for multi-channel detection with Generalized Likelihood Ratio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in which the null hypothesis is that the channels are independent and contain only complex white Gaussian noise and the alternative hypothesis is that the channels contain a common rank-one signal in the mean, the GLRT statistic is the largest eigenvalue $\lambda_1$ of the Gram matrix formed from data. This Gram matrix has a Wishart distribution. Although exact expressions for the distribution of $\lambda_1$ are known under both hypotheses, numerically calculating values of these distribution functions presents difficulties in cases where the dimension of the data vectors is large. This dissertation presents tractable methods for computing the distribution of $\lambda_1$ under both the null and alternative hypotheses through a technique of expanding known expressions for the distribution of $\lambda_1$ as inner products of orthogonal polynomials. These newly presented expressions for the distribution allow for computation of detection thresholds and receiver operating characteristic curves to arbitrary precision in floating point arithmetic. This represents a significant advancement over the state of the art in a problem that could previously only be addressed by Monte Carlo methods.
Date Created
2019
Agent

Designing a Software Platform for Evaluating Cyber-Attacks on The Electric PowerGrid

157375-Thumbnail Image.png
Description
Energy management system (EMS) is at the heart of the operation and control of a modern electrical grid. Because of economic, safety, and security reasons, access to industrial grade EMS and real-world power system data is extremely limited. Therefore, the

Energy management system (EMS) is at the heart of the operation and control of a modern electrical grid. Because of economic, safety, and security reasons, access to industrial grade EMS and real-world power system data is extremely limited. Therefore, the ability to simulate an EMS is invaluable in researching the EMS in normal and anomalous operating conditions.

I first lay the groundwork for a basic EMS loop simulation in modern power grids and review a class of cybersecurity threats called false data injection (FDI) attacks. Then I propose a software architecture as the basis of software simulation of the EMS loop and explain an actual software platform built using the proposed architecture. I also explain in detail the power analysis libraries used for building the platform with examples and illustrations from the implemented application. Finally, I will use the platform to simulate FDI attacks on two synthetic power system test cases and analyze and visualize the consequences using the capabilities built into the platform.
Date Created
2019
Agent

Security Analysis of Interdependent Critical Infrastructures: Power, Cyber and Gas

156827-Thumbnail Image.png
Description
Our daily life is becoming more and more reliant on services provided by the infrastructures

power, gas , communication networks. Ensuring the security of these

infrastructures is of utmost importance. This task becomes ever more challenging as

the inter-dependence among these infrastructures grows

Our daily life is becoming more and more reliant on services provided by the infrastructures

power, gas , communication networks. Ensuring the security of these

infrastructures is of utmost importance. This task becomes ever more challenging as

the inter-dependence among these infrastructures grows and a security breach in one

infrastructure can spill over to the others. The implication is that the security practices/

analysis recommended for these infrastructures should be done in coordination.

This thesis, focusing on the power grid, explores strategies to secure the system that

look into the coupling of the power grid to the cyber infrastructure, used to manage

and control it, and to the gas grid, that supplies an increasing amount of reserves to

overcome contingencies.

The first part (Part I) of the thesis, including chapters 2 through 4, focuses on

the coupling of the power and the cyber infrastructure that is used for its control and

operations. The goal is to detect malicious attacks gaining information about the

operation of the power grid to later attack the system. In chapter 2, we propose a

hierarchical architecture that correlates the analysis of high resolution Micro-Phasor

Measurement Unit (microPMU) data and traffic analysis on the Supervisory Control

and Data Acquisition (SCADA) packets, to infer the security status of the grid and

detect the presence of possible intruders. An essential part of this architecture is

tied to the analysis on the microPMU data. In chapter 3 we establish a set of anomaly

detection rules on microPMU data that

flag "abnormal behavior". A placement strategy

of microPMU sensors is also proposed to maximize the sensitivity in detecting anomalies.

In chapter 4, we focus on developing rules that can localize the source of an events

using microPMU to further check whether a cyber attack is causing the anomaly, by

correlating SCADA traffic with the microPMU data analysis results. The thread that

unies the data analysis in this chapter is the fact that decision are made without fully estimating the state of the system; on the contrary, decisions are made using

a set of physical measurements that falls short by orders of magnitude to meet the

needs for observability. More specifically, in the first part of this chapter (sections 4.1-

4.2), using microPMU data in the substation, methodologies for online identification of

the source Thevenin parameters are presented. This methodology is used to identify

reconnaissance activity on the normally-open switches in the substation, initiated

by attackers to gauge its controllability over the cyber network. The applications

of this methodology in monitoring the voltage stability of the grid is also discussed.

In the second part of this chapter (sections 4.3-4.5), we investigate the localization

of faults. Since the number of PMU sensors available to carry out the inference

is insufficient to ensure observability, the problem can be viewed as that of under-sampling

a "graph signal"; the analysis leads to a PMU placement strategy that can

achieve the highest resolution in localizing the fault, for a given number of sensors.

In both cases, the results of the analysis are leveraged in the detection of cyber-physical

attacks, where microPMU data and relevant SCADA network traffic information

are compared to determine if a network breach has affected the integrity of the system

information and/or operations.

In second part of this thesis (Part II), the security analysis considers the adequacy

and reliability of schedules for the gas and power network. The motivation for

scheduling jointly supply in gas and power networks is motivated by the increasing

reliance of power grids on natural gas generators (and, indirectly, on gas pipelines)

as providing critical reserves. Chapter 5 focuses on unveiling the challenges and

providing solution to this problem.
Date Created
2018
Agent

Data-Driven and Game-Theoretic Approaches for Privacy

156751-Thumbnail Image.png
Description
In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers (businesses) to collect a large amount of data. However, this

In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers (businesses) to collect a large amount of data. However, this ``data collection" process can put the privacy of users at risk and also lead to user reluctance in accepting services or sharing data. This dissertation first investigates privacy sensitive consumer-retailers/service providers interactions under different scenarios, and then focuses on a unified framework for various information-theoretic privacy and privacy mechanisms that can be learned directly from data.

Existing approaches such as differential privacy or information-theoretic privacy try to quantify privacy risk but do not capture the subjective experience and heterogeneous expression of privacy-sensitivity. The first part of this dissertation introduces models to study consumer-retailer interaction problems and to better understand how retailers/service providers can balance their revenue objectives while being sensitive to user privacy concerns. This dissertation considers the following three scenarios: (i) the consumer-retailer interaction via personalized advertisements; (ii) incentive mechanisms that electrical utility providers need to offer for privacy sensitive consumers with alternative energy sources; (iii) the market viability of offering privacy guaranteed free online services. We use game-theoretic models to capture the behaviors of both consumers and retailers, and provide insights for retailers to maximize their profits when interacting with privacy sensitive consumers.

Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. In the second part, a novel context-aware privacy framework called generative adversarial privacy (GAP) is introduced. Inspired by recent advancements in generative adversarial networks, GAP allows the data holder to learn the privatization mechanism directly from the data. Under GAP, finding the optimal privacy mechanism is formulated as a constrained minimax game between a privatizer and an adversary. For appropriately chosen adversarial loss functions, GAP provides privacy guarantees against strong information-theoretic adversaries. Both synthetic and real-world datasets are used to show that GAP can greatly reduce the adversary's capability of inferring private information at a small cost of distorting the data.
Date Created
2018
Agent

Outage Probability Analysis of Full-Duplex Amplify-and-Forward MIMO Relay Systems

156661-Thumbnail Image.png
Description
Multiple-input multiple-output systems have gained focus in the last decade due to the benefits they provide in enhancing the quality of communications. On the other hand, full-duplex communication has attracted remarkable attention due to its ability to improve the spectral

Multiple-input multiple-output systems have gained focus in the last decade due to the benefits they provide in enhancing the quality of communications. On the other hand, full-duplex communication has attracted remarkable attention due to its ability to improve the spectral efficiency compared to the existing half-duplex systems. Using full-duplex communications on MIMO co-operative networks can provide us solutions that can completely outperform existing systems with simultaneous transmission and reception at high data rates.

This thesis considers a full-duplex MIMO relay which amplifies and forwards the received signals, between a source and a destination that do not a have line of sight. Full-duplex mode raises the problem of self-interference. Though all the links in the system undergo frequency flat fading, the end-to-end effective channel is frequency selective. This is due to the imperfect cancellation of the self-interference at the relay and this residual self-interference acts as intersymbol interference at the destination which is treated by equalization. This also leads to complications in form of recursive equations to determine the input-output relationship of the system. This also leads to complications in the form of recursive equations to determine the input-output relationship of the system.

To overcome this, a signal flow graph approach using Mason's gain formula is proposed, where the effective channel is analyzed with keen notice to every loop and path the signal traverses. This gives a clear understanding and awareness about the orders of the polynomials involved in the transfer function, from which desired conclusions can be drawn. But the complexity of Mason's gain formula increases with the number of antennas at relay which can be overcome by the proposed linear algebraic method. Input-output relationship derived using simple concepts of linear algebra can be generalized to any number of antennas and the computation complexity is comparatively very low.

For a full-duplex amplify-and-forward MIMO relay system, assuming equalization at the destination, new mechanisms have been implemented at the relay that can compensate the effect of residual self-interference namely equal-gain transmission and antenna selection. Though equal-gain transmission does not perform better than the maximal ratio transmission, a trade-off can be made between performance and implementation complexity. Using the proposed antenna selection strategy, one pair of transmit-receive antennas at the relay is selected based on four selection criteria discussed. Outage probability analysis is performed for all the strategies presented and detailed comparison has been established. Considering minimum mean-squared error decision feedback equalizer at the destination, a bound on the outage probability has been obtained for the antenna selection case and is used for comparisons. A cross-over point is observed while comparing the outage probabilities of equal-gain transmission and antenna selection techniques, as the signal-to-noise ratio increases and from that point antenna selection outperforms equal-gain transmission and this is explained by the fact of reduced residual self-interference in antenna selection method.
Date Created
2018
Agent

Channel Estimation in Half and Full Duplex Relays

156646-Thumbnail Image.png
Description
Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are

Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are the key components for the implementation and the performance of the FD TWR system, making channel estimation in FD TWRs crucial.

The impact of channel estimation on spectral efficiency in half-duplex multiple-input-multiple-output (MIMO) TWR systems is investigated. The trade-off between training and data energy is proposed. In the case that two sources are symmetric in power and number of antennas, a closed-form for the optimal ratio of data energy to total energy is derived. It can be shown that the achievable rate is a monotonically increasing function of the data length. The asymmetric case is discussed as well.

Efficient and accurate training schemes for FD TWRs are essential for profiting from the inherent spectrally efficient structures of both FD and TWRs. A novel one-block training scheme with a maximum likelihood (ML) estimator is proposed to estimate the channels between the nodes and the residual self-interference (RSI) channel simultaneously. Baseline training schemes are also considered to compare with the one-block scheme. The Cramer-Rao bounds (CRBs) of the training schemes are derived and analyzed by using the asymptotic properties of Toeplitz matrices. The benefit of estimating the RSI channel is shown analytically in terms of Fisher information.

To obtain fundamental and analytic results of how the RSI affects the spectral efficiency, one-way FD relay systems are studied. Optimal training design and ML channel estimation are proposed to estimate the RSI channel. The CRBs are derived and analyzed in closed-form so that the optimal training sequence can be found via minimizing the CRB. Extensions of the training scheme to frequency-selective channels and multiple relays are also presented.

Simultaneously sensing and transmission in an FD cognitive radio system with MIMO is considered. The trade-off between the transmission rate and the detection accuracy is characterized by the sum-rate of the primary and the secondary users. Different beamforming and combining schemes are proposed and compared.
Date Created
2018
Agent

Universal Source Coding in the Non-Asymptotic Regime

156280-Thumbnail Image.png
Description
Fundamental limits of fixed-to-variable (F-V) and variable-to-fixed (V-F) length universal source coding at short blocklengths is characterized. For F-V length coding, the Type Size (TS) code has previously been shown to be optimal up to the third-order rate for universal

Fundamental limits of fixed-to-variable (F-V) and variable-to-fixed (V-F) length universal source coding at short blocklengths is characterized. For F-V length coding, the Type Size (TS) code has previously been shown to be optimal up to the third-order rate for universal compression of all memoryless sources over finite alphabets. The TS code assigns sequences ordered based on their type class sizes to binary strings ordered lexicographically.

Universal F-V coding problem for the class of first-order stationary, irreducible and aperiodic Markov sources is first considered. Third-order coding rate of the TS code for the Markov class is derived. A converse on the third-order coding rate for the general class of F-V codes is presented which shows the optimality of the TS code for such Markov sources.

This type class approach is then generalized for compression of the parametric sources. A natural scheme is to define two sequences to be in the same type class if and only if they are equiprobable under any model in the parametric class. This natural approach, however, is shown to be suboptimal. A variation of the Type Size code is introduced, where type classes are defined based on neighborhoods of minimal sufficient statistics. Asymptotics of the overflow rate of this variation is derived and a converse result establishes its optimality up to the third-order term. These results are derived for parametric families of i.i.d. sources as well as Markov sources.

Finally, universal V-F length coding of the class of parametric sources is considered in the short blocklengths regime. The proposed dictionary which is used to parse the source output stream, consists of sequences in the boundaries of transition from low to high quantized type complexity, hence the name Type Complexity (TC) code. For large enough dictionary, the $\epsilon$-coding rate of the TC code is derived and a converse result is derived showing its optimality up to the third-order term.
Date Created
2018
Agent

Fundamental Limits on Performance for Cooperative Radar-Communications Coexistence

156145-Thumbnail Image.png
Description
Spectral congestion is quickly becoming a problem for the telecommunications sector. In order to alleviate spectral congestion and achieve electromagnetic radio frequency (RF) convergence, communications and radar systems are increasingly encouraged to share bandwidth. In direct opposition to the traditional

Spectral congestion is quickly becoming a problem for the telecommunications sector. In order to alleviate spectral congestion and achieve electromagnetic radio frequency (RF) convergence, communications and radar systems are increasingly encouraged to share bandwidth. In direct opposition to the traditional spectrum sharing approach between radar and communications systems of complete isolation (temporal, spectral or spatial), both systems can be jointly co-designed from the ground up to maximize their joint performance for mutual benefit. In order to properly characterize and understand cooperative spectrum sharing between radar and communications systems, the fundamental limits on performance of a cooperative radar-communications system are investigated. To facilitate this investigation, performance metrics are chosen in this dissertation that allow radar and communications to be compared on the same scale. To that effect, information is chosen as the performance metric and an information theoretic radar performance metric compatible with the communications data rate, the radar estimation rate, is developed. The estimation rate measures the amount of information learned by illuminating a target. With the development of the estimation rate, standard multi-user communications performance bounds are extended with joint radar-communications users to produce bounds on the performance of a joint radar-communications system. System performance for variations of the standard spectrum sharing problem defined in this dissertation are investigated, and inner bounds on performance are extended to account for the effect of continuous radar waveform optimization, multiple radar targets, clutter, phase noise, and radar detection. A detailed interpretation of the estimation rate and a brief discussion on how to use these performance bounds to select an optimal operating point and achieve RF convergence are provided.
Date Created
2018
Agent