Meta-Analysis for Multi-Cancer Early Detection Biomarker Discovery

193690-Thumbnail Image.png
Description
Cancer poses a significant worldwide burden where ongoing efforts are targeted towards improving patient outcomes in which a significant contribution results from cancer screening. Multi-cancer early detection tests have been introduced which measure a series of biomarkers to detect signals

Cancer poses a significant worldwide burden where ongoing efforts are targeted towards improving patient outcomes in which a significant contribution results from cancer screening. Multi-cancer early detection tests have been introduced which measure a series of biomarkers to detect signals that may indicate carcinogenesis in its earliest stages and work in tandem with other diagnostic techniques to localize and verify tumor formation across multiple cancer types. Molecular biomarkers such as autoantibodies are promising candidates for early detection across multiple cancers. This study identifies autoantibodies that are aberrantly expressed across multiple cancer types that may be used to discriminate between healthy individuals and those with cancer from a single serum sample. Multiple datasets are integrated from prior studies to examine 8,200 sera autoantibodies from 5 cancer types including lung adenocarcinoma, basal-like breast cancer, advanced colorectal cancer, ovarian cancer, and HER2+ breast cancer. The diagnostic utility of these autoantibodies is assessed for combined cancer types by meta-receiver operating characteristic (ROC) curve analysis. A meta-analysis data processing pipeline is utilized for processing each biomarker with statistical analysis performed across ROC metrics for each meta-curve including partial area under the curve and sensitivity at a 90% specificity threshold. Results identified 26 autoantibody biomarkers that are useful for multi-cancer detection and may be developed for future clinical applications in cancer screening.
Date Created
2024
Agent

Modeling Nitrous Oxide Emissions from Wastewater Treatment Plants

Description

This outlines a mathematical model created in MATLAB for the purposes of predicting nitrous oxide emissions from wastewater treatment plants with updated an updated understanding of AOB metabolic pathway.

Date Created
2023-05
Agent

Electrochemical Characterization of a High-Current-Density Microbial Biocathode with an Air Diffusion Membrane

135253-Thumbnail Image.png
Description
In microbial fuel cells (MFCs) the biocathode is developed as a potential alternative to chemical cathodic catalysts, which are deemed as expensive and unsustainable for applications. These cells utilize different types of microorganisms as catalysts to promote biodegradation of organic

In microbial fuel cells (MFCs) the biocathode is developed as a potential alternative to chemical cathodic catalysts, which are deemed as expensive and unsustainable for applications. These cells utilize different types of microorganisms as catalysts to promote biodegradation of organic matter while simultaneously converting energy released in metabolic reactions into electrical energy. Most current research have focused more on the anodic microbes, including the current generating bacteria species, anodic microbial community composition, and the mechanisms of the extracellular electron transfer. Compared to the anode, research on the microbes of the biocathode of the MFCs are very limited and are heavily focused on the role of the bacteria in the system. Thus, further understand of the mechanism of the microbial community in the biocathode will create new engineering applications for sustainable energy. Previous research conducted by Strycharz-Glaven et al. presented an electrochemical analysis of a Marinobacter-dominated biocathode communitygrown on biocathodes in sediment/seawater-based MFCs. Chronoamperometry results indicated that current densities up to -0.04 A/m2 were produced for the biocathode. Cyclic voltammetry responses indicated a midpoint potential at 0.196 V ± 0.01 V. However, the reactor design for these experiments showed that no oxygen is supplied to the electrochemical system. By incorporating an air diffusion membrane to the cathode of the reactor, chronoamperometry results have produced current density in the system up to -0.15 A/m2. Cyclic voltammetry results have also displayed a midpoint potential of 0.25 V ± 0.01 V under scan rates of 0.2 mV/s. Thus, this electrochemical setup has increased the current output of the system.
Date Created
2016-05
Agent