Analyzing the opportunities for NIPAAm dehumidification in air conditioning systems

157169-Thumbnail Image.png
Description
When air is supplied to a conditioned space, the temperature and humidity of the air often contribute to the comfort and health of the occupants within the space. However, the vapor compression system, which is the standard air conditioning configuration,

When air is supplied to a conditioned space, the temperature and humidity of the air often contribute to the comfort and health of the occupants within the space. However, the vapor compression system, which is the standard air conditioning configuration, requires air to reach the dew point for dehumidification to occur, which can decrease system efficiency and longevity in low temperature applications.

To improve performance, some systems dehumidify the air before cooling. One common dehumidifier is the desiccant wheel, in which solid desiccant absorbs moisture out of the air while rotating through circular housing. This system improves performance, especially when the desiccant is regenerated with waste or solar heat; however, the heat of regeneration is very large, as the water absorbed during dehumidification must be evaporated. N-isopropylacrylamide (NIPAAm), a sorbent that oozes water when raised above a certain temperature, could potentially replace traditional desiccants in dehumidifiers. The heat of regeneration for NIPAAm consists of some sensible heat to bring the sorbent to the regeneration temperature, plus some latent heat to offset any liquid water that is evaporated as it is exuded from the NIPAAm. This means the NIPAAm regeneration heat has the potential to be much lower than that of a traditional desiccant.

Models were created for a standard vapor compression air conditioning system, two desiccant systems, and two theoretical NIPAAm systems. All components were modeled for simplified steady state operation. For a moderate percent of water evaporated during regeneration, it was found that the NIPAAm systems perform better than standard vapor compression. When compared to the desiccant systems, the NIPAAm systems performed better at almost all percent evaporation values. The regeneration heat was modeled as if supplied by an electric heater. If a cheaper heat source were utilized, the case for NIPAAm would be even stronger.

Future work on NIPAAm dehumidification should focus on lowering the percent evaporation from the 67% value found in literature. Additionally, the NIPAAm cannot exceed the lower critical solution temperature during dehumidification, indicating that a NIPAAm dehumidification system should be carefully designed such that the sorbent temperature is kept sufficiently low during dehumidification.
Date Created
2019
Agent

Thermal Energy Storage Using Organic and Metallic Phase Change Materials

135140-Thumbnail Image.png
Description
Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy

Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and the United States formed a project to design solar concentrators that utilize Concentrated Solar Power and Thermal Energy Storage. The collaborators from Arizona State designed a Latent Heat Thermal Energy Storage system for the project. It was initially proposed that the system utilize Dowtherm A as the Heat Transfer Fluid and a tin alloy as the storage material. Two thermal reservoirs were designed as part of the system; one reservoir was designed to be maintained at 240˚ C, while the other reservoir was designed to be maintained at 210˚ C. The tin was designed to receive heat from the hot reservoir during a charging cycle and discharge heat to the cold reservoir during a discharge cycle. From simulation, it was estimated that the system would complete a charging cycle in 17.5 minutes and a discharging cycle in 6.667 minutes [1]. After the initial design was fabricated and assembled, the system proved ineffective and did not perform as expected. Leaks occurred within the system under high pressure and the reservoirs could not be heated to the desired temperatures. After adding a flange to one of the reservoirs, it was decided that the system would be run with one reservoir, with water as the Heat Transfer Fluid. The storage material was changed to paraffin wax, because it would achieve phase change at a temperature lower than the boiling point of water. Since only one reservoir was available, charging cycle tests were performed on the system to gain insight on system performance. It was found that the paraffin sample only absorbs 3.29% of the available heat present during a charging cycle. This report discusses the tests performed on the system, the analysis of the data from these tests, the issues with the system that were revealed from the analyses, and potential design changes that would increase the efficiency of the system.
Date Created
2016-12
Agent