Synthesis and characterization of ZIF-71/PDMS membranes for biofuel separation

156050-Thumbnail Image.png
Description
Membranes are a key part of pervaporation processes, which is generally a more

efficient process for selective removal of alcohol from water than distillation. It is

necessary that the membranes have high alcohol permeabilities and selectivities.

Polydimethylsiloxane (PDMS) based mixed matrix membranes (MMMs)

Membranes are a key part of pervaporation processes, which is generally a more

efficient process for selective removal of alcohol from water than distillation. It is

necessary that the membranes have high alcohol permeabilities and selectivities.

Polydimethylsiloxane (PDMS) based mixed matrix membranes (MMMs) have

demonstrated very promising results. Zeolitic imidazolate framework-71 (ZIF-71)

demonstrated promising alcohol separation abilities. In this dissertation, we present

fundamental studies on the synthesis of ZIF-71/PDMS MMMs.

Free-standing ZIF-71/ PDMS membranes with 0, 5, 25 and 40 wt % ZIF-71

loadings were prepared and the pervaporation separation for ethanol and 1-butanol from

water was measured. ZIF-71/PDMS MMMs were formed through addition cure and

condensation cure methods. Addition cure method was not compatible with ZIF-71

resulting in membranes with poor mechanical properties, while the condensation cure

method resulted in membranes with good mechanical properties. The 40 wt % ZIF-71

loading PDMS nanocomposite membranes achieved a maximum ethanol/water selectivity

of 0.81 ± 0.04 selectivity and maximum 1-butnaol/water selectivity of 5.64 ± 0.15.

The effects of synthesis time, temperature, and reactant ratio on ZIF-71 particle

size and the effect of particle size on membrane performance were studied. Temperature

had the greatest effect on ZIF-71 particle size as the synthesis temperature varied from -

20 to 35 ºC. The ZIF-71 synthesized had particle diameters ranging from 150 nm to 1

μm. ZIF-71 particle size is critical in ZIF-71/PDMS composite membrane performance

for alcohol removal from water through pervaporation. The membranes made with

micron sized ZIF-71 particles showed higher alcohol/water selectivity than those with

smaller particles. Both alcohol and water permeability increased when larger sized ZIF-

71 particles were incorporated.

ZIF-71 particles were modified with four ligands through solvent assisted linker

exchange (SALE) method: benzimidazole (BIM), 5-methylbenzimidazole (MBIM), 5,6-

dimethylbenzimidazole (DMBIM) and 4-Phenylimidazole (PI). The morphology of ZIF-

71 were maintained after the modification. ZIF-71/PDMS composite membranes with 25

wt% loading modified ZIF-71 particles were made for alcohol/water separation. Better

particle dispersion in PDMS polymer matrix was observed with the ligand modified ZIFs.

For both ethanol/water and 1-butanol/water separations, the alcohol permeability and

alcohol/water selectivity were lowered after the ZIF-71 ligand exchange reaction.
Date Created
2017
Agent

Membrane modification for sensing urine biomarker levels

Description
Acute Kidney Injury (AKI) may be detected through biomarkers in urine. This research is being done to develop a membrane for use in separating urine biomarkers to monitor their level. A hydrophobic membrane was treated to improve separation of the

Acute Kidney Injury (AKI) may be detected through biomarkers in urine. This research is being done to develop a membrane for use in separating urine biomarkers to monitor their level. A hydrophobic membrane was treated to improve separation of the desired biomarker for colorimetric sensing. This method was tested with model solutions containing the biomarker. Future work will extend to testing with real urine.
Date Created
2017-05
Agent