Cortical sensorimotor mechanisms for neural control of skilled manipulation

155960-Thumbnail Image.png
Description
The human hand is a complex biological system. Humans have evolved a unique ability to use the hand for a wide range of tasks, including activities of daily living such as successfully grasping and manipulating objects, i.e., lifting a cu

The human hand is a complex biological system. Humans have evolved a unique ability to use the hand for a wide range of tasks, including activities of daily living such as successfully grasping and manipulating objects, i.e., lifting a cup of coffee without spilling. Despite the ubiquitous nature of hand use in everyday activities involving object manipulations, there is currently an incomplete understanding of the cortical sensorimotor mechanisms underlying this important behavior. One critical aspect of natural object grasping is the coordination of where the fingers make contact with an object and how much force is applied following contact. Such force-to-position modulation is critical for successful manipulation. However, the neural mechanisms underlying these motor processes remain less understood, as previous experiments have utilized protocols with fixed contact points which likely rely on different neural mechanisms from those involved in grasping at unconstrained contacts. To address this gap in the motor neuroscience field, transcranial magnetic stimulation (TMS) and electroencephalography (EEG) were used to investigate the role of primary motor cortex (M1), as well as other important cortical regions in the grasping network, during the planning and execution of object grasping and manipulation. The results of virtual lesions induced by TMS and EEG revealed grasp context-specific cortical mechanisms underlying digit force-to-position coordination, as well as the spatial and temporal dynamics of cortical activity during planning and execution. Together, the present findings provide the foundation for a novel framework accounting for how the central nervous system controls dexterous manipulation. This new knowledge can potentially benefit research in neuroprosthetics and improve the efficacy of neurorehabilitation techniques for patients affected by sensorimotor impairments.
Date Created
2017
Agent

Customized Endovascular Treatment Fixture Construction for Patient-Specific Cerebral Aneurysm Repair

134522-Thumbnail Image.png
Description
Cerebral aneurysms are pathological bulges in blood vessels of the brain that can rupture and cause brain damage or death. Treating aneurysms by isolating them from circulation can prevent aneurysm rupture. Endovascular techniques for cerebral aneurysm treatment are preferred because

Cerebral aneurysms are pathological bulges in blood vessels of the brain that can rupture and cause brain damage or death. Treating aneurysms by isolating them from circulation can prevent aneurysm rupture. Endovascular techniques for cerebral aneurysm treatment are preferred because they are minimally invasive and have a shorter recovery time, and endovascular coiling is considered the gold standard as a result. The coils used in endovascular treatment come in standard shapes and sizes, mass-manufactured by medical device companies. Clinicians select the coils for treatment based on the aneurysm volume. However, cerebral aneurysms have unique shapes and dimensions, and vary on a patient-specific basis. Therefore, customizing the coils to fit a unique aneurysm morphology by using shape memory alloys could potentially improve endovascular treatment outcomes. In order to shape set a shape memory alloy into a customized coil configuration a fixture based on the aneurysm morphology must first be developed. Digital surface models of aneurysm patient cases were collected from an online repository and isolated from surrounding vasculature. Anchors used to assist in winding coils around these models were then added to create a computational fixture model. These fixtures were 3D printed in stainless steel, and tested on their ability to maintain their shape after being exposed to high temperatures needed in shape setting processes. The study demonstrated that customized fixtures can be created from patient-specific images or models, and manufactured with high levels of accuracy without deformation at high temperatures. The results suggest that 3D printed stainless steel fixtures could be used to develop customized endovascular coils for cerebral aneurysm treatment.
Date Created
2017-05
Agent

Time-dependent modulations in corticospinal excitability during motor learning

136335-Thumbnail Image.png
Description
The primary motor cortex (M1) plays a vital role in motor planning and execution, as well as in motor learning. Baseline corticospinal excitability (CSE) in M1 is known to increase as a result of motor learning, but less is understand

The primary motor cortex (M1) plays a vital role in motor planning and execution, as well as in motor learning. Baseline corticospinal excitability (CSE) in M1 is known to increase as a result of motor learning, but less is understand about the modulation of CSE at the pre-execution planning stage due to learning. This question was addressed using single pulse transcranial magnetic stimulation (TMS) to measure the modulation of both baseline and planning CSE due to learning a reach to grasp task. It was hypothesized that baseline CSE would increase and planning CSE decrease as a function of trial; an increase in baseline CSE would replicate established findings in the literature, while a decrease in planning would be a novel finding. Eight right-handed subjects were visually cued to exert a precise grip force, with the goal of producing that force accurately and consistently. Subjects effectively learned the task in the first 10 trials, but no significant trends were found in the modulation of baseline or planning CSE. The lack of significant results may be due to the very quick learning phase or the lower intensity of training as compared to past studies. The findings presented here suggest that planning and baseline CSE may be modulated along different time courses as learning occurs and point to some important considerations for future studies addressing this question.
Date Created
2015-05
Agent

Siloxane based cellular labeling: functional applications in 1H MRI

153319-Thumbnail Image.png
Description
Modern medical conditions, including cancer, traumatic brain injury, and cardiovascular disease, have elicited the need for cell therapies. The ability to non-invasively track cells in vivo in order to evaluate these therapies and explore cell dynamics is necessary. Magnetic Resonance

Modern medical conditions, including cancer, traumatic brain injury, and cardiovascular disease, have elicited the need for cell therapies. The ability to non-invasively track cells in vivo in order to evaluate these therapies and explore cell dynamics is necessary. Magnetic Resonance Imaging provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. A new methodology for cellular labeling and imaging uses Nile Red doped hexamethyldisiloxane (HMDSO) nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence), dual-functional (oximetry/ detection) nanoprobes. While Gadolinium chelates and super paramagnetic iron oxide-based particles have historically provided contrast enhancement in MRI, newer agents offer additional advantages. A technique using 1H MRI in conjunction with an oxygen reporter molecule is one tool capable of providing these benefits, and can be used in neural progenitor cell and cancer cell studies. Proton Imaging of Siloxanes to Map Tissue Oxygenation Levels (PISTOL) provides the ability to track the polydimethylsiloxane (PDMS) labeled cells utilizing the duality of the nanoemulsions. 1H MRI based labeling of neural stem cells and cancer cells was successfully demonstrated. Additionally, fluorescence labeling of the nanoprobes provided validation of the MRI data and could prove useful for quick in vivo verification and ex vivo validation for future studies.
Date Created
2014
Agent