Supplementing Traditional Symbolic Logic Instruction with Historical Background and Real-World Applications

133941-Thumbnail Image.png
Description
A thorough understanding of the key concepts of logic is critical for student success. Logic is often not explicitly taught as its own subject in modern curriculums, which results in misconceptions among students as to what comprises logical reasoning. In

A thorough understanding of the key concepts of logic is critical for student success. Logic is often not explicitly taught as its own subject in modern curriculums, which results in misconceptions among students as to what comprises logical reasoning. In addition, current standardized testing schemes often promote teaching styles which emphasize students' abilities to memorize set problem-solving methods over their capacities to reason abstractly and creatively. These phenomena, in tandem with halting progress in United States education compared to other developed nations, suggest that implementing logic courses into public schools and universities can better prepare students for professional careers and beyond. In particular, logic is essential for mathematics students as they transition from calculation-based courses to theoretical, proof-based classes. Many students find this adjustment difficult, and existing university-level courses which emphasize the technical aspects of symbolic logic do not fully bridge the gap between these two different approaches to mathematics. As a step towards resolving this problem, this project proposes a logic course which integrates historical, technical, and interdisciplinary investigations to present logic as a robust and meaningful subject warranting independent study. This course is designed with mathematics students in mind, with particular stresses on different formulations of deductively valid proof schemes. Additionally, this class can either be taught before existing logic classes in an effort to gradually expose students to logic over an extended period of time, or it can replace current logic courses as a more holistic introduction to the subject. The first section of the course investigates historical developments in studies of argumentation and logic throughout different civilizations; specifically, the works of ancient China, ancient India, ancient Greece, medieval Europe, and modernity are investigated. Along the way, several important themes are highlighted within appropriate historical contexts; these are often presented in an ad hoc way in courses emphasizing technical features of symbolic logic. After the motivations for modern symbolic logic are established, the key technical features of symbolic logic are presented, including: logical connectives, truth tables, logical equivalence, derivations, predicates, and quantifiers. Potential obstacles in students' understandings of these ideas are anticipated, and resolution methods are proposed. Finally, examples of how ideas of symbolic logic are manifested in many modern disciplines are presented. In particular, key concepts in game theory, computer science, biology, grammar, and mathematics are reformulated in the context of symbolic logic. By combining the three perspectives of historical context, technical aspects, and practical applications of symbolic logic, this course will ideally make logic a more meaningful and accessible subject for students.
Date Created
2018-05
Agent

Honey Bee Population Dynamics and Neonicotinoids

135651-Thumbnail Image.png
Description
Honey bees (Apis mellifera) are responsible for pollinating nearly 80\% of all pollinated plants, meaning humans depend on honey bees to pollinate many staple crops. The success or failure of a colony is vital to global food production. There are

Honey bees (Apis mellifera) are responsible for pollinating nearly 80\% of all pollinated plants, meaning humans depend on honey bees to pollinate many staple crops. The success or failure of a colony is vital to global food production. There are various complex factors that can contribute to a colony's failure, including pesticides. Neonicotoids are a popular pesticide that have been used in recent times. In this study we concern ourselves with pesticides and its impact on honey bee colonies. Previous investigations that we draw significant inspiration from include Khoury et Al's \emph{A Quantitative Model of Honey Bee Colony Population Dynamics}, Henry et Al's \emph{A Common Pesticide Decreases Foraging Success and Survival in Honey Bees}, and Brown's \emph{ Mathematical Models of Honey Bee Populations: Rapid Population Decline}. In this project we extend a mathematical model to investigate the impact of pesticides on a honey bee colony, with birth rates and death rates being dependent on pesticides, and we see how these death rates influence the growth of a colony. Our studies have found an equilibrium point that depends on pesticides. Trace amounts of pesticide are detrimental as they not only affect death rates, but birth rates as well.
Date Created
2016-05
Agent

Mathematical Modeling: Lights Out!

136236-Thumbnail Image.png
Description
Lights Out is a puzzle game where the goal is to turn off all the lights on a nxn board starting from a random configuration. In order to find the solution of a configuration, the game is constructed using a

Lights Out is a puzzle game where the goal is to turn off all the lights on a nxn board starting from a random configuration. In order to find the solution of a configuration, the game is constructed using a matrix basis in the span of the field Z mod 2.This the game can be modeled by the system Ap=s which will be the center of the investigation when determining the solvability for any n×n board since A is not always invertable leading to some interesting cases. The goal of this thesis was to construct a model that will allow the player to solve for the pushes to attain the zero-state for an nxn system. Constructing the model gave a procedure that will allow to solve the puzzle game. The procedure presented here first uses a simple clearing technique (valid for any board size) to turn off all the lights except in the last row, which we call the standard-clear. The heart of the technique, is to give a way to use the information about which lights remain lit in the last row to determine which switches in the first row need to be pushed before the standard-clear. This part of the solution algorithm we call the first row adjustment, and it depends heavily on the specific board size n of the problem. Finally, after these first row pushes are made, the standard clear will now turn off all the lights including (seemingly magically) the last row. Thus the solution to the Lights Out puzzle of a given size is reduced to finding a first row adjustment for that size. (Please refer to the actual thesis for the full abstract)
Date Created
2015-05
Agent