A new backoff strategy using topological persistence in wireless networks

152164-Thumbnail Image.png
Description
Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff

Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11 but all ignore the network topology and demand. Persistence is defined as the fraction of time a node is allowed to transmit, when this allowance should take into account topology and load, it is topology and load aware persistence (TLA). We develop a relation between contention window size and the TLA-persistence. We implement a new backoff strategy where the TLA-persistence is defined as the lexicographic max-min channel allocation. We use a centralized algorithm to calculate each node's TLApersistence and then convert it into a contention window size. The new backoff strategy is evaluated in simulation, comparing with that of the IEEE 802.11 using BEB. In most of the static scenarios like exposed terminal, flow in the middle, star topology, and heavy loaded multi-hop networks and in MANETs, through the simulation study, we show that the new backoff strategy achieves higher overall average throughput as compared to that of the IEEE 802.11 using BEB.
Date Created
2013
Agent

Analysis of shifts & trends of organizations in Indonesia using tweets & RSS feeds

152112-Thumbnail Image.png
Description
With the advent of social media (like Twitter, Facebook etc.,) people are easily sharing their opinions, sentiments and enforcing their ideologies on others like never before. Even people who are otherwise socially inactive would like to share their thoughts on

With the advent of social media (like Twitter, Facebook etc.,) people are easily sharing their opinions, sentiments and enforcing their ideologies on others like never before. Even people who are otherwise socially inactive would like to share their thoughts on current affairs by tweeting and sharing news feeds with their friends and acquaintances. In this thesis study, we chose Twitter as our main data platform to analyze shifts and movements of 27 political organizations in Indonesia. So far, we have collected over 30 million tweets and 150,000 news articles from RSS feeds of the corresponding organizations for our analysis. For Twitter data extraction, we developed a multi-threaded application which seamlessly extracts, cleans and stores millions of tweets matching our keywords from Twitter Streaming API. For keyword extraction, we used topics and perspectives which were extracted using n-grams techniques and later approved by our social scientists. After the data is extracted, we aggregate the tweet contents that belong to every user on a weekly basis. Finally, we applied linear and logistic regression using SLEP, an open source sparse learning package to compute weekly score for users and mapping them to one of the 27 organizations on a radical or counter radical scale. Since, we are mapping users to organizations on a weekly basis, we are able to track user's behavior and important new events that triggered shifts among users between organizations. This thesis study can further be extended to identify topics and organization specific influential users and new users from various social media platforms like Facebook, YouTube etc. can easily be mapped to existing organizations on a radical or counter-radical scale.
Date Created
2013
Agent

Coping with selfish behavior in networks using game theory

152082-Thumbnail Image.png
Description
While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.
Date Created
2013
Agent

A semantic triplet based story classifier

151627-Thumbnail Image.png
Description
Text classification, in the artificial intelligence domain, is an activity in which text documents are automatically classified into predefined categories using machine learning techniques. An example of this is classifying uncategorized news articles into different predefined categories such as "Business",

Text classification, in the artificial intelligence domain, is an activity in which text documents are automatically classified into predefined categories using machine learning techniques. An example of this is classifying uncategorized news articles into different predefined categories such as "Business", "Politics", "Education", "Technology" , etc. In this thesis, supervised machine learning approach is followed, in which a module is first trained with pre-classified training data and then class of test data is predicted. Good feature extraction is an important step in the machine learning approach and hence the main component of this text classifier is semantic triplet based features in addition to traditional features like standard keyword based features and statistical features based on shallow-parsing (such as density of POS tags and named entities). Triplet {Subject, Verb, Object} in a sentence is defined as a relation between subject and object, the relation being the predicate (verb). Triplet extraction process, is a 5 step process which takes input corpus as a web text document(s), each consisting of one or many paragraphs, from RSS feeds to lists of extremist website. Input corpus feeds into the "Pronoun Resolution" step, which uses an heuristic approach to identify the noun phrases referenced by the pronouns. The next step "SRL Parser" is a shallow semantic parser and converts the incoming pronoun resolved paragraphs into annotated predicate argument format. The output of SRL parser is processed by "Triplet Extractor" algorithm which forms the triplet in the form {Subject, Verb, Object}. Generalization and reduction of triplet features is the next step. Reduced feature representation reduces computing time, yields better discriminatory behavior and handles curse of dimensionality phenomena. For training and testing, a ten- fold cross validation approach is followed. In each round SVM classifier is trained with 90% of labeled (training) data and in the testing phase, classes of remaining 10% unlabeled (testing) data are predicted. Concluding, this paper proposes a model with semantic triplet based features for story classification. The effectiveness of the model is demonstrated against other traditional features used in the literature for text classification tasks.
Date Created
2013
Agent

Industrial applications of data mining: engineering effort forecasting based on mining and analysis of patterns in historical project execution data

151517-Thumbnail Image.png
Description
Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the

Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the semiconductor industry. To achieve this goal we face difficulties like data with relevant consumption information but stored in different format and insufficient data about project attributes to interpret consumption data. Our first goal is to clean the historical data and organize it into meaningful structures for analysis. Once the preprocessing on data is completed, different data mining techniques like clustering is applied to find projects which involve resources of similar skillsets and which involve similar complexities and size. This results in "resource utilization templates" for groups of related projects from a resource consumption perspective. Then project characteristics are identified which generate this diversity in headcounts and skillsets. These characteristics are not currently contained in the data base and are elicited from the managers of historical projects. This represents an opportunity to improve the usefulness of the data collection system for the future. The ultimate goal is to match the product technical features with the resource requirement for projects in the past as a model to forecast resource requirements by skill set for future projects. The forecasting model is developed using linear regression with cross validation of the training data as the past project execution are relatively few in number. Acceptable levels of forecast accuracy are achieved relative to human experts' results and the tool is applied to forecast some future projects' resource demand.
Date Created
2013
Agent

Design, analysis and resource allocations in networks in presence of region-based faults

151500-Thumbnail Image.png
Description
Communication networks, both wired and wireless, are expected to have a certain level of fault-tolerance capability.These networks are also expected to ensure a graceful degradation in performance when some of the network components fail. Traditional studies on fault tolerance in

Communication networks, both wired and wireless, are expected to have a certain level of fault-tolerance capability.These networks are also expected to ensure a graceful degradation in performance when some of the network components fail. Traditional studies on fault tolerance in communication networks, for the most part, make no assumptions regarding the location of node/link faults, i.e., the faulty nodes and links may be close to each other or far from each other. However, in many real life scenarios, there exists a strong spatial correlation among the faulty nodes and links. Such failures are often encountered in disaster situations, e.g., natural calamities or enemy attacks. In presence of such region-based faults, many of traditional network analysis and fault-tolerant metrics, that are valid under non-spatially correlated faults, are no longer applicable. To this effect, the main thrust of this research is design and analysis of robust networks in presence of such region-based faults. One important finding of this research is that if some prior knowledge is available on the maximum size of the region that might be affected due to a region-based fault, this piece of knowledge can be effectively utilized for resource efficient design of networks. It has been shown in this dissertation that in some scenarios, effective utilization of this knowledge may result in substantial saving is transmission power in wireless networks. In this dissertation, the impact of region-based faults on the connectivity of wireless networks has been studied and a new metric, region-based connectivity, is proposed to measure the fault-tolerance capability of a network. In addition, novel metrics, such as the region-based component decomposition number(RBCDN) and region-based largest component size(RBLCS) have been proposed to capture the network state, when a region-based fault disconnects the network. Finally, this dissertation presents efficient resource allocation techniques that ensure tolerance against region-based faults, in distributed file storage networks and data center networks.
Date Created
2013
Agent

Characterization of cost excess in cloud applications

151275-Thumbnail Image.png
Description
The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected

The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to an earn-as-you-go profit model for many cloud based applications. These applications can benefit from low level analyses for cost optimization and verification. Testing cloud applications to ensure they meet monetary cost objectives has not been well explored in the current literature. When considering revenues and costs for cloud applications, the resource economic model can be scaled down to the transaction level in order to associate source code with costs incurred while running in the cloud. Both static and dynamic analysis techniques can be developed and applied to understand how and where cloud applications incur costs. Such analyses can help optimize (i.e. minimize) costs and verify that they stay within expected tolerances. An adaptation of Worst Case Execution Time (WCET) analysis is presented here to statically determine worst case monetary costs of cloud applications. This analysis is used to produce an algorithm for determining control flow paths within an application that can exceed a given cost threshold. The corresponding results are used to identify path sections that contribute most to cost excess. A hybrid approach for determining cost excesses is also presented that is comprised mostly of dynamic measurements but that also incorporates calculations that are based on the static analysis approach. This approach uses operational profiles to increase the precision and usefulness of the calculations.
Date Created
2012
Agent

Listing combinatorial objects

151231-Thumbnail Image.png
Description
Gray codes are perhaps the best known structures for listing sequences of combinatorial objects, such as binary strings. Simply defined as a minimal change listing, Gray codes vary greatly both in structure and in the types of objects that they

Gray codes are perhaps the best known structures for listing sequences of combinatorial objects, such as binary strings. Simply defined as a minimal change listing, Gray codes vary greatly both in structure and in the types of objects that they list. More specific types of Gray codes are universal cycles and overlap sequences. Universal cycles are Gray codes on a set of strings of length n in which the first n-1 letters of one object are the same as the last n-1 letters of its predecessor in the listing. Overlap sequences allow this overlap to vary between 1 and n-1. Some of our main contributions to the areas of Gray codes and universal cycles include a new Gray code algorithm for fixed weight m-ary words, and results on the existence of universal cycles for weak orders on [n]. Overlap cycles are a relatively new structure with very few published results. We prove the existence of s-overlap cycles for k-permutations of [n], which has been an open research problem for several years, as well as constructing 1- overlap cycles for Steiner triple and quadruple systems of every order. Also included are various other results of a similar nature covering other structures such as binary strings, m-ary strings, subsets, permutations, weak orders, partitions, and designs. These listing structures lend themselves readily to some classes of combinatorial objects, such as binary n-tuples and m-ary n-tuples. Others require more work to find an appropriate structure, such as k-subsets of an n-set, weak orders, and designs. Still more require a modification in the representation of the objects to fit these structures, such as partitions. Determining when and how we can fit these sets of objects into our three listing structures is the focus of this dissertation.
Date Created
2012
Agent

Robust and efficient medium access despite jamming

151063-Thumbnail Image.png
Description
Interference constitutes a major challenge for communication networks operating over a shared medium where availability is imperative. This dissertation studies the problem of designing and analyzing efficient medium access protocols which are robust against strong adversarial jamming. More specifically, four

Interference constitutes a major challenge for communication networks operating over a shared medium where availability is imperative. This dissertation studies the problem of designing and analyzing efficient medium access protocols which are robust against strong adversarial jamming. More specifically, four medium access (MAC) protocols (i.e., JADE, ANTIJAM, COMAC, and SINRMAC) which aim to achieve high throughput despite jamming activities under a variety of network and adversary models are presented. We also propose a self-stabilizing leader election protocol, SELECT, that can effectively elect a leader in the network with the existence of a strong adversary. Our protocols can not only deal with internal interference without the exact knowledge on the number of participants in the network, but they are also robust to unintentional or intentional external interference, e.g., due to co-existing networks or jammers. We model the external interference by a powerful adaptive and/or reactive adversary which can jam a (1 − ε)-portion of the time steps, where 0 < ε ≤ 1 is an arbitrary constant. We allow the adversary to be adaptive and to have complete knowledge of the entire protocol history. Moreover, in case the adversary is also reactive, it uses carrier sensing to make informed decisions to disrupt communications. Among the proposed protocols, JADE, ANTIJAM and COMAC are able to achieve Θ(1)-competitive throughput with the presence of the strong adversary; while SINRMAC is the first attempt to apply SINR model (i.e., Signal to Interference plus Noise Ratio), in robust medium access protocols design; the derived principles are also useful to build applications on top of the MAC layer, and we present SELECT, which is an exemplary study for leader election, which is one of the most fundamental tasks in distributed computing.
Date Created
2012
Agent

A tool for threading, organizing and presenting emails using a web interface

151004-Thumbnail Image.png
Description
The overall contribution of the Minerva Initiative at ASU is to map social organizations in a multidimensional space that provides a measure of their radical or counter radical influence over the demographics of a nation. This tool serves as a

The overall contribution of the Minerva Initiative at ASU is to map social organizations in a multidimensional space that provides a measure of their radical or counter radical influence over the demographics of a nation. This tool serves as a simple content management system to store and track project resources like documents, images, videos and web links. It provides centralized and secure access to email conversations among project team members. Conversations are categorized into one of the seven pre-defined categories. Each category is associated with a certain set of keywords and we follow a frequency based approach for matching email conversations with the categories. The interface is hosted as a web application which can be accessed by the project team.
Date Created
2012
Agent