Assessing Influential Users in Live Streaming Social Networks

157833-Thumbnail Image.png
Description
Live streaming has risen to significant popularity in the recent past and largely this live streaming is a feature of existing social networks like Facebook, Instagram, and Snapchat. However, there does exist at least one social network entirely devoted to

Live streaming has risen to significant popularity in the recent past and largely this live streaming is a feature of existing social networks like Facebook, Instagram, and Snapchat. However, there does exist at least one social network entirely devoted to live streaming, and specifically the live streaming of video games, Twitch. This social network is unique for a number of reasons, not least because of its hyper-focus on live content and this uniqueness has challenges for social media researchers.

Despite this uniqueness, almost no scientific work has been performed on this public social network. Thus, it is unclear what user interaction features present on other social networks exist on Twitch. Investigating the interactions between users and identifying which, if any, of the common user behaviors on social network exist on Twitch is an important step in understanding how Twitch fits in to the social media ecosystem. For example, there are users that have large followings on Twitch and amass a large number of viewers, but do those users exert influence over the behavior of other user the way that popular users on Twitter do?

This task, however, will not be trivial. The same hyper-focus on live content that makes Twitch unique in the social network space invalidates many of the traditional approaches to social network analysis. Thus, new algorithms and techniques must be developed in order to tap this data source. In this thesis, a novel algorithm for finding games whose releases have made a significant impact on the network is described as well as a novel algorithm for detecting and identifying influential players of games. In addition, the Twitch network is described in detail along with the data that was collected in order to power the two previously described algorithms.
Date Created
2019
Agent

Twitch Streamer-Game Recommender System

132430-Thumbnail Image.png
Description
Abstract
Matrix Factorization techniques have been proven to be more effective in recommender systems than standard user based or item based methods. Using this knowledge, Funk SVD and SVD++ are compared by the accuracy of their predictions of Twitch streamer data.

Introduction
As

Abstract
Matrix Factorization techniques have been proven to be more effective in recommender systems than standard user based or item based methods. Using this knowledge, Funk SVD and SVD++ are compared by the accuracy of their predictions of Twitch streamer data.

Introduction
As watching video games is becoming more popular, those interested are becoming interested in Twitch.tv, an online platform for guests to watch streamers play video games and interact with them. A streamer is an person who broadcasts them-self playing a video game or some other thing for an audience (the guests of the website.) The site allows the guest to first select the game/category to view and then displays currently active streamers for the guest to select and watch. Twitch records the games that a streamer plays along with the amount of time that a streamer spends streaming that game. This is how the score is generated for a streamer’s game. These three terms form the streamer-game-score (user-item-rating) tuples that we use to train out models.
The our problem’s solution is similar to the purpose of the Netflix prize; however, as opposed to suggesting a user a movie, the goal is to suggest a user a game. We built a model to predict the score that a streamer will have for a game. The score field in our data is fundamentally different from a movie rating in Netflix because the way a user influences a game’s score is by actively streaming it, not by giving it an score based off opinion. The dataset being used it the Twitch.tv dataset provided by Isaac Jones [1]. Also, the only data used in training the models is in the form of the streamer-game-score (user-item-rating) tuples. It will be known if these data points with limited information will be able to give an accurate prediction of a streamer’s score for a game. SVD and SVD++ are the baseis of the models being trained and tested. Scikit’s Surprise library in Python3 is used for the implementation of the models.
Date Created
2019-05
Agent