Parametric Forcing of Confined and Stratified Flows

Description
A continuously and stably stratified fluid contained in a square cavity subjected to harmonic body forcing is studied numerically by solving the Navier-Stokes equations under the Boussinesq approximation. Complex dynamics are observed near the onset of instability of the basic

A continuously and stably stratified fluid contained in a square cavity subjected to harmonic body forcing is studied numerically by solving the Navier-Stokes equations under the Boussinesq approximation. Complex dynamics are observed near the onset of instability of the basic state, which is a flow configuration that is always an exact analytical solution of the governing equations. The instability of the basic state to perturbations is first studied with linear stability analysis (Floquet analysis), revealing a multitude of intersecting synchronous and subharmonic resonance tongues in parameter space. A modal reduction method for determining the locus of basic state instability is also shown, greatly simplifying the computational overhead normally required by a Floquet study. Then, a study of the nonlinear governing equations determines the criticality of the basic state's instability, and ultimately characterizes the dynamics of the lowest order spatial mode by the three discovered codimension-two bifurcation points within the resonance tongue. The rich dynamics include a homoclinic doubling cascade that resembles the logistic map and a multitude of gluing bifurcations.

The numerical techniques and methodologies are first demonstrated on a homogeneous fluid contained within a three-dimensional lid-driven cavity. The edge state technique and linear stability analysis through Arnoldi iteration are used to resolve the complex dynamics of the canonical shear-driven benchmark problem. The techniques here lead to a dynamical description of an instability mechanism, and the work serves as a basis for the remainder of the dissertation.
Date Created
2019
Agent

Dynamics of Tilted Stably Stratified Square Cavities

Description
The dynamics of a stably and thermally stratified, two dimensional fluid-filled cavity are the subject of numerical study. When gravity is orthogonal to the endwalls, a closed form for a steady state solution with trivial flow may be obtained. However,

The dynamics of a stably and thermally stratified, two dimensional fluid-filled cavity are the subject of numerical study. When gravity is orthogonal to the endwalls, a closed form for a steady state solution with trivial flow may be obtained. However, as soon as the cavity is tilted the flow becomes nontrivial. Previous studies have investigated when this tilt angle is 180 degrees (Rayleigh-Bénard convection), 90 degrees, and 0 degrees, or have done a sweep while solving the steady-state equations. When buoyancy is sufficiently weak the flow is stable and steady up to 90 degrees of tilt. Above a certain level of buoyancy, as measured by the temperature difference between the top and bottom walls, the flow becomes unsteady above a tilt angle less than 90 degrees. Specifically, In this study we examine the relationship between the critical tilt angle and the buoyancy level at the onset of unsteadiness, as well as the dynamical mechanisms by which it occurs.
Date Created
2019-05
Agent