Reproductive Cheating in Harvester Ants - An Agent Based Model

Description
Pogonomyrmex californicus (a species of harvester ant) colonies typically have anywhere from one to five queens. A queen can control the ratio of female to male offspring she produces, field research indicating that this ratio is genetically hardwired and does

Pogonomyrmex californicus (a species of harvester ant) colonies typically have anywhere from one to five queens. A queen can control the ratio of female to male offspring she produces, field research indicating that this ratio is genetically hardwired and does not change over time relative to other queens. Further, a queen has an individual reproductive advantage if she has a small reproductive ratio. A colony, however, has a reproductive advantage if it has queens with large ratios, as these queens produce many female workers to further colony success. We have developed an agent-based model to analyze the "cheating" phenotype observed in field research, in which queens extend their lifespans by producing disproportionately many male offspring. The model generates phenotypes and simulates years of reproductive cycles. The results allow us to examine the surviving phenotypes and determine conditions under which a cheating phenotype has an evolutionary advantage. Conditions generating a bimodal steady state solution would indicate a cheating phenotype's ability to invade a cooperative population.
Date Created
2017-05
Agent

It Takes Five: Basketball Teams Using Network Metrics

137483-Thumbnail Image.png
Description
Analytic research on basketball games is growing quickly, specifically in the National Basketball Association. This paper explored the development of this analytic research and discovered that there has been a focus on individual player metrics and a dearth of quantitative

Analytic research on basketball games is growing quickly, specifically in the National Basketball Association. This paper explored the development of this analytic research and discovered that there has been a focus on individual player metrics and a dearth of quantitative team characterizations and evaluations. Consequently, this paper continued the exploratory research of Fewell and Armbruster's "Basketball teams as strategic networks" (2012), which modeled basketball teams as networks and used metrics to characterize team strategy in the NBA's 2010 playoffs. Individual players and outcomes were nodes and passes and actions were the links. This paper used data that was recorded from playoff games of the two 2012 NBA finalists: the Miami Heat and the Oklahoma City Thunder. The same metrics that Fewell and Armbruster used were explained, then calculated using this data. The offensive networks of these two teams during the playoffs were analyzed and interpreted by using other data and qualitative characterization of the teams' strategies; the paper found that the calculated metrics largely matched with our qualitative characterizations of the teams. The validity of the metrics in this paper and Fewell and Armbruster's paper was then discussed, and modeling basketball teams as multiple-order Markov chains rather than as networks was explored.
Date Created
2013-05
Agent

Variation in Growth Rate of Colonies with Differing Queen Systems in the Ant Species Pogonomyrmex californicus

137061-Thumbnail Image.png
Description
I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens,

I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic queens would have an advantage of cooperating together in reproducing more workers quicker than the other conditions to make up for the lost workers. This would demonstrate a benefit that pleometrosis has over haplometrosis for mature colonies, which would explain why pleometrosis continues for P.californicus after colony foundation. After removing all but twenty workers for every colony, I took pictures and counted the emerging brood for 52 days. Analyses showed that the paired pleometrotic queens and the haplometrotic queens both grew at an equally efficient rate and the paired pleometrotic and haplometrotic queens growing the least efficiently. However, the results were not significant and did not support the hypothesis that paired pleometrotic queens recover from worker loss more proficiently than other social systems.
Date Created
2014-05
Agent

Division of labor and the regulation of house hunting and foraging in the rock cavity ant Temnothorax rugatulus.

136781-Thumbnail Image.png
Description
Division of labor among task specialists is a key feature of the organization of insect societies. Foraging and emigration are two distinct colony tasks that nonetheless depend on very similar behaviors, including searching outside the nest, evaluating discoveries, and recruiting

Division of labor among task specialists is a key feature of the organization of insect societies. Foraging and emigration are two distinct colony tasks that nonetheless depend on very similar behaviors, including searching outside the nest, evaluating discoveries, and recruiting nestmates. These subtasks are crucial to collective decisions about forager allocation and nest site selection. It remains unclear, however, whether the same ants are responsible for similar behavior in both contexts, and to what degree they show finer specializations among common subtasks. We are investigating these issues in the ant Temnothorax rugatulus, by making detailed behavioral descriptions of individually marked colonies as they forage and emigrate. There exists considerable heterogeneity among nest-movers, with a small proportion consistently responsible for a large share of recruitment. We found a similar pattern of heterogeneity amongst ants retrieving food during foraging, but had inconclusive results when examining recruitment to the food. It also appears that the ants that complete tasks during foraging are different from the ants that complete similar tasks during emigrations. These findings will shed light on the organization of division of labor and how it contributes to collective decision-making.
Date Created
2013-05
Agent

A Model for the Division of Labor Through Network Interactions

136330-Thumbnail Image.png
Description
We model communication among social insects as an interacting particle system in which individuals perform one of two tasks and neighboring sites anti-mimic one another. Parameters of our model are a probability of defection 2 (0; 1) and relative cost

We model communication among social insects as an interacting particle system in which individuals perform one of two tasks and neighboring sites anti-mimic one another. Parameters of our model are a probability of defection 2 (0; 1) and relative cost ci > 0 to the individual performing task i. We examine this process on complete graphs, bipartite graphs, and the integers, answering questions about the relationship between communication, defection rates and the division of labor. Assuming the division of labor is ideal when exactly half of the colony is performing each task, we nd that on some bipartite graphs and the integers it can eventually be made arbitrarily close to optimal if defection rates are sufficiently small. On complete graphs the fraction of individuals performing each task is also closest to one half when there is no defection, but is bounded by a constant dependent on the relative costs of each task.
Date Created
2015-05
Agent

The effect of Pristine fungicide on honey bee (Apis mellifera) taste and responsiveness to sucrose

136157-Thumbnail Image.png
Description
Honey bee (Apis mellifera) colonies have experienced substantial losses due to colony collapse disorder (CCD) since the first officially reported cases in 2006. Many factors have been implicated in CCD, including pests, pathogens, malnutrition, and pesticide use, but no correlation

Honey bee (Apis mellifera) colonies have experienced substantial losses due to colony collapse disorder (CCD) since the first officially reported cases in 2006. Many factors have been implicated in CCD, including pests, pathogens, malnutrition, and pesticide use, but no correlation has been found between a single factor and the occurrence of CCD. Fungicides have received less research attention compared to insecticides, despite the fact that fungicide application coincides with bloom and the presence of bees. Pristine fungicide is widely used in agriculture and is commonly found as a residue in hives. Several studies have concluded that Pristine can be used without harming bees, but reports of brood loss following Pristine application continue to surface across the country. The primary objectives of this study were to determine whether Pristine causes an aversive gustatory response in bees and whether consumption of an acute dose affects responsiveness to sucrose. An awareness of how foragers interact with contaminated food is useful to understand the likelihood that Pristine is ingested and how that may affect bees' ability to evaluate floral resources. Our results indicated that Pristine has no significant effect on gustatory response or sucrose responsiveness. There was no significant difference between bee responses to Pristine contaminated sucrose and sucrose alone, and no significant effect of Pristine on sucrose responsiveness. These results indicate that honey bees do not have a gustatory aversion to Pristine. A lack of aversion means that honey bees will continue collecting contaminated resources and dispersing them throughout the colony where it can affect brood and clean food stores.
Date Created
2015-05
Agent

The Explutrientoration of Macronutrient Regulation in the Desert Leafcutter

135881-Thumbnail Image.png
Description
Nutritional balance is a requirement for the survival of all species. This balance is important for complex eusocial organisms as it influences the growth and development of the colony. Leafcutter ants function as tri-trophic systems, harvesting mixed vegetation to cultivate

Nutritional balance is a requirement for the survival of all species. This balance is important for complex eusocial organisms as it influences the growth and development of the colony. Leafcutter ants function as tri-trophic systems, harvesting mixed vegetation to cultivate a fungus garden that in return supplies the colony with food. Examining how the colony deals with nutrient balance is of particular interest because this species forages to provide nutrients for the fungus. There seems to be a feedback system between the fungus and the workers that influences how much of a particular macronutrient should be collected. The objective of this thesis study was to examine the foraging behavior of the desert leaf cutter ant, Acromyrmex versicolor. This study asked how nutrition, in particular the ratio of carbohydrates to proteins, influences the foraging behavior of the colony. It was hypothesized that given a choice of high protein and high carbohydrate diets the leafcutters would forage towards a balance ratio. The results from this experiment showed that A. versicolor forage towards a target ratio of protein to carbohydrate to based diets. This p:c ratio was calculated to be 1:6.2; 1 gram of protein to 6.2 grams of carbohydrate. When colonies were restricted to the high carbohydrate diet, they increased food consumption, consistent with the expectation that they would forage to reach their protein nutrient requirement, however, they reduced foraging on that diet. This suggests that ants avoid overconsuming protein, even when doing so provided more optimal carbohydrate intake. From this study I concluded that nutritional balance is a foraging goal for ant societies, similar to organisms. These results also open the question of how nutrient regulation by leafcutter ants is regulated around their mutualist relationship with another organism, the fungus.
Date Created
2015-12
Agent

The Foundress’s Dilemma: Group Selection for Cooperation Among Queens of the Harvester Ant, Pogonomyrmex Californicus

141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

Date Created
2016-07-28
Agent

Information Processing in Social Insect Networks

141482-Thumbnail Image.png
Description

Investigating local-scale interactions within a network makes it possible to test hypotheses about the mechanisms of global network connectivity and to ask whether there are general rules underlying network function across systems. Here we use motif analysis to determine whether

Investigating local-scale interactions within a network makes it possible to test hypotheses about the mechanisms of global network connectivity and to ask whether there are general rules underlying network function across systems. Here we use motif analysis to determine whether the interactions within social insect colonies resemble the patterns exhibited by other animal associations or if they exhibit characteristics of biological regulatory systems. Colonies exhibit a predominance of feed-forward interaction motifs, in contrast to the densely interconnected clique patterns that characterize human interaction and animal social networks. The regulatory motif signature supports the hypothesis that social insect colonies are shaped by selection for network patterns that integrate colony functionality at the group rather than individual level, and demonstrates the utility of this approach for analysis of selection effects on complex systems across biological levels of organization.

Date Created
2012-07-16
Agent

Basketball Teams as Strategic Networks

141487-Thumbnail Image.png
Description

We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties

We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role.

However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as “uphill/downhill” flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy.

These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness.

Date Created
2012-11-06
Agent