FPGAs as an Edge Computing Solution
Description
As the Internet of Things continues to expand, not only must our computing power grow
alongside it, our very approach must evolve. While the recent trend has been to centralize our
computing resources in the cloud, it now looks beneficial to push more computing power
towards the “edge” with so called edge computing, reducing the immense strain on cloud
servers and the latency experienced by IoT devices. A new computing paradigm also brings
new opportunities for innovation, and one such innovation could be the use of FPGAs as edge
servers. In this research project, I learn the design flow for developing OpenCL kernels and
custom FPGA BSPs. Using these tools, I investigate the viability of using FPGAs as standalone
edge computing devices. Concluding that—although the technology is a great fit—the current
necessity of dynamically reprogrammable FPGAs to be closely coupled with a host CPU is
holding them back from this purpose. I propose a modification to the architecture of the Intel
Arria 10 GX that would allow it to be decoupled from its host CPU, allowing it to truly serve as a
viable edge computing solution.
alongside it, our very approach must evolve. While the recent trend has been to centralize our
computing resources in the cloud, it now looks beneficial to push more computing power
towards the “edge” with so called edge computing, reducing the immense strain on cloud
servers and the latency experienced by IoT devices. A new computing paradigm also brings
new opportunities for innovation, and one such innovation could be the use of FPGAs as edge
servers. In this research project, I learn the design flow for developing OpenCL kernels and
custom FPGA BSPs. Using these tools, I investigate the viability of using FPGAs as standalone
edge computing devices. Concluding that—although the technology is a great fit—the current
necessity of dynamically reprogrammable FPGAs to be closely coupled with a host CPU is
holding them back from this purpose. I propose a modification to the architecture of the Intel
Arria 10 GX that would allow it to be decoupled from its host CPU, allowing it to truly serve as a
viable edge computing solution.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019-05
Agent
- Author (aut): Barth, Brandon Albert
- Thesis director: Ren, Fengbo
- Committee member: Vrudhula, Sarma
- Contributor (ctb): Computer Science and Engineering Program
- Contributor (ctb): Computer Science and Engineering Program
- Contributor (ctb): Barrett, The Honors College