A Study of Some Edge-Deletion Algorithms for Reducing Disease Spread on Networks

133381-Thumbnail Image.png
Description
This thesis discusses three recent optimization problems that seek to reduce disease spread on arbitrary graphs by deleting edges, and it discusses three approximation algorithms developed for these problems. Important definitions are presented including the Linear Threshold and Triggering Set

This thesis discusses three recent optimization problems that seek to reduce disease spread on arbitrary graphs by deleting edges, and it discusses three approximation algorithms developed for these problems. Important definitions are presented including the Linear Threshold and Triggering Set models and the set function properties of submodularity and monotonicity. Also, important results regarding the Linear Threshold model and computation of the influence function are presented along with proof sketches. The three main problems are formally presented, and NP-hardness results along with proof sketches are presented where applicable. The first problem seeks to reduce spread of infection over the Linear Threshold process by making use of an efficient tree data structure. The second problem seeks to reduce the spread of infection over the Linear Threshold process while preserving the PageRank distribution of the input graph. The third problem seeks to minimize the spectral radius of the input graph. The algorithms designed for these problems are described in writing and with pseudocode, and their approximation bounds are stated along with time complexities. Discussion of these algorithms considers how these algorithms could see real-world use. Challenges and the ways in which these algorithms do or do not overcome them are noted. Two related works, one which presents an edge-deletion disease spread reduction problem over a deterministic threshold process and the other which considers a graph modification problem aimed at minimizing worst-case disease spread, are compared with the three main works to provide interesting perspectives. Furthermore, a new problem is proposed that could avoid some issues faced by the three main problems described, and directions for future work are suggested.
Date Created
2018-05
Agent

Post-Optimization of Permutation Coverings

136691-Thumbnail Image.png
Description
Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an

Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has size close to or equal to the minimum possible. The construction of such permutation coverings has proven to be computationally difficult. While many examples for permutations of small length have been found, and strong asymptotic behavior is known, there are few explicit constructions for permutations of intermediate lengths. Most of these are generated from scratch using greedy algorithms. We explore a different approach here. Starting with a set of permutations with the desired coverage properties, we compute local changes to individual permutations that retain the total coverage of the set. By choosing these local changes so as to make one permutation less "essential" in maintaining the coverage of the set, our method attempts to make a permutation completely non-essential, so it can be removed without sacrificing total coverage. We develop a post-optimization method to do this and present results on sequence covering arrays and other types of permutation covering problems demonstrating that it is surprisingly effective.
Date Created
2014-12
Agent

An exploration of proofs of the Szemerédi regularity lemma

136340-Thumbnail Image.png
Description
This paper focuses on the Szemerédi regularity lemma, a result in the field of extremal graph theory. The lemma says that every graph can be partitioned into bounded equal parts such that most edges of the graph span these partitions,

This paper focuses on the Szemerédi regularity lemma, a result in the field of extremal graph theory. The lemma says that every graph can be partitioned into bounded equal parts such that most edges of the graph span these partitions, and these edges are distributed in a fairly uniform way. Definitions and notation will be established, leading to explorations of three proofs of the regularity lemma. These are a version of the original proof, a Pythagoras proof utilizing elemental geometry, and a proof utilizing concepts of spectral graph theory. This paper is intended to supplement the proofs with background information about the concepts utilized. Furthermore, it is the hope that this paper will serve as another resource for students and others to begin study of the regularity lemma.
Date Created
2015-05
Agent

Toward enumerating the chains of maximum length of Cambrian and m-eralized Cambrian lattices

155340-Thumbnail Image.png
Description
The Cambrian lattice corresponding to a Coxeter element c of An, denoted Camb(c),

is the subposet of An induced by the c-sortable elements, and the m-eralized Cambrian

lattice corresponding to c, denoted Cambm(c), is dened as a subposet of the

braid group accompanied

The Cambrian lattice corresponding to a Coxeter element c of An, denoted Camb(c),

is the subposet of An induced by the c-sortable elements, and the m-eralized Cambrian

lattice corresponding to c, denoted Cambm(c), is dened as a subposet of the

braid group accompanied with the right weak ordering induced by the c-sortable elements

under certain conditions. Both of these families generalize the well-studied

Tamari lattice Tn rst introduced by D. Tamari in 1962. S. Fishel and L. Nelson

enumerated the chains of maximum length of Tamari lattices.

In this dissertation, I study the chains of maximum length of the Cambrian and

m-eralized Cambrian lattices, precisely, I enumerate these chains in terms of other

objects, and then nd formulas for the number of these chains for all m-eralized

Cambrian lattices of A1, A2, A3, and A4. Furthermore, I give an alternative proof

for the number of chains of maximum length of the Tamari lattice Tn, and provide

conjectures and corollaries for the number of these chains for all m-eralized Cambrian

lattices of A5.
Date Created
2017
Agent

On chains in the Tamari lattice

155093-Thumbnail Image.png
Description
The Tamari lattice T(n) was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Since then it has been studied in various areas of mathematics including

The Tamari lattice T(n) was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Since then it has been studied in various areas of mathematics including cluster algebras, discrete geometry, algebraic combinatorics, and Catalan theory. Although in several related lattices the number of maximal chains is known, the enumeration of these chains in Tamari lattices is still an open problem.

This dissertation defines a partially-ordered set on equivalence classes of certain saturated chains of T(n) called the Tamari Block poset, TB(lambda). It further proves TB(lambda) is a graded lattice. It then shows for lambda = (n-1,...,2,1) TB(lambda) is anti-isomorphic to the Higher Stasheff-Tamari orders in dimension 3 on n+2 elements. It also investigates enumeration questions involving TB(lambda), and proves other structural results along the way.
Date Created
2016
Agent

Covering arrays: algorithms and asymptotics

155047-Thumbnail Image.png
Description
Modern software and hardware systems are composed of a large number of components. Often different components of a system interact with each other in unforeseen and undesired ways to cause failures. Covering arrays are a useful mathematical tool for testing

Modern software and hardware systems are composed of a large number of components. Often different components of a system interact with each other in unforeseen and undesired ways to cause failures. Covering arrays are a useful mathematical tool for testing all possible t-way interactions among the components of a system.

The two major issues concerning covering arrays are explicit construction of a covering array, and exact or approximate determination of the covering array number---the minimum size of a covering array. Although these problems have been investigated extensively for the last couple of decades, in this thesis we present significant improvements on both of these questions using tools from the probabilistic method and randomized algorithms.

First, a series of improvements is developed on the previously known upper bounds on covering array numbers. An estimate for the discrete Stein-Lovász-Johnson bound is derived and the Stein- Lovász -Johnson bound is improved upon using an alteration strategy. Then group actions on the set of symbols are explored to establish two asymptotic upper bounds on covering array numbers that are tighter than any of the presently known bounds.

Second, an algorithmic paradigm, called the two-stage framework, is introduced for covering array construction. A number of concrete algorithms from this framework are analyzed, and it is shown that they outperform current methods in the range of parameter values that are of practical relevance. In some cases, a reduction in the number of tests by more than 50% is achieved.

Third, the Lovász local lemma is applied on covering perfect hash families to obtain an upper bound on covering array numbers that is tightest of all known bounds. This bound leads to a Moser-Tardos type algorithm that employs linear algebraic computation over finite fields to construct covering arrays. In some cases, this algorithm outperforms currently used methods by more than an 80% margin.

Finally, partial covering arrays are introduced to investigate a few practically relevant relaxations of the covering requirement. Using probabilistic methods, bounds are obtained on partial covering arrays that are significantly smaller than for covering arrays. Also, randomized algorithms are provided that construct such arrays in expected polynomial time.
Date Created
2016
Agent

Toward the enumeration of maximal chains in the Tamari lattices

154926-Thumbnail Image.png
Description
The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of n+1 objects, with a cover relation based on the associativity

The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Despite their interesting aspects and the attention they have received, a formula for the number of maximal chains in the Tamari lattices is still unknown. The purpose of this thesis is to convey my results on progress toward the solution of this problem and to discuss future work.

A few years ago, Bergeron and Préville-Ratelle generalized the Tamari lattices to the m-Tamari lattices. The original Tamari lattices T(n) are the case m=1. I establish a bijection between maximum length chains in the m-Tamari lattices and standard m-shifted Young tableaux. Using Thrall’s formula, I thus derive the formula for the number of maximum length chains in T(n).

For each i greater or equal to -1 and for all n greater or equal to 1, I define C(i,n) to be the set of maximal chains of length n+i in T(n). I establish several properties of maximal chains (treated as tableaux) and identify a particularly special property: each maximal chain may or may not possess a plus-full-set. I show, surprisingly, that for all n greater or equal to 2i+4, each member of C(i,n) contains a plus-full-set. Utilizing this fact and a collection of maps, I obtain a recursion for the number of elements in C(i,n) and an explicit formula based on predetermined initial values. The formula is a polynomial in n of degree 3i+3. For example, the number of maximal chains of length n in T(n) is n choose 3.

I discuss current work and future plans involving certain equivalence classes of maximal chains in the Tamari lattices. If a maximal chain may be obtained from another by swapping a pair of consecutive edges with another pair in the Hasse diagram, the two maximal chains are said to differ by a square move. Two maximal chains are said to be in the same equivalence class if one may be obtained from the other by making a set of square moves.
Date Created
2016
Agent

On choosability and paintability of graphs

153556-Thumbnail Image.png
Description
Let $G=(V,E)$ be a graph. A \emph{list assignment} $L$ for $G$ is a function from

$V$ to subsets of the natural numbers. An $L$-\emph{coloring} is a function $f$

with domain $V$ such that $f(v)\in L(v)$ for all vertices $v\in V$ and $f(x)\ne

Let $G=(V,E)$ be a graph. A \emph{list assignment} $L$ for $G$ is a function from

$V$ to subsets of the natural numbers. An $L$-\emph{coloring} is a function $f$

with domain $V$ such that $f(v)\in L(v)$ for all vertices $v\in V$ and $f(x)\ne f(y)$

whenever $xy\in E$. If $|L(v)|=t$ for all $v\in V$ then $L$ is a $t$-\emph{list

assignment}. The graph $G$ is $t$-choosable if for every $t$-list assignment $L$

there is an $L$-coloring. The least $t$ such that $G$ is $t$-choosable is called

the list chromatic number of $G$, and is denoted by $\ch(G)$. The complete multipartite

graph with $k$ parts, each of size $s$ is denoted by $K_{s*k}$. Erd\H{o}s et al.

suggested the problem of determining $\ensuremath{\ch(K_{s*k})}$, and showed that

$\ch(K_{2*k})=k$. Alon gave bounds of the form $\Theta(k\log s)$. Kierstead proved

the exact bound $\ch(K_{3*k})=\lceil\frac{4k-1}{3}\rceil$. Here it is proved that

$\ch(K_{4*k})=\lceil\frac{3k-1}{2}\rceil$.

An online version of the list coloring problem was introduced independently by Schauz

and Zhu. It can be formulated as a game between two players, Alice and Bob. Alice

designs lists of colors for all vertices, but does not tell Bob, and is allowed to

change her mind about unrevealed colors as the game progresses. On her $i$-th turn

Alice reveals all vertices with $i$ in their list. On his $i$-th turn Bob decides,

irrevocably, which (independent set) of these vertices to color with $i$. For a

function $l$ from $V$ to the natural numbers, Bob wins the $l$-\emph{game} if

eventually he colors every vertex $v$ before $v$ has had $l(v)+1$ colors of its

list revealed by Alice; otherwise Alice wins. The graph $G$ is $l$-\emph{online

choosable} or \emph{$l$-paintable} if Bob has a strategy to win the $l$-game. If

$l(v)=t$ for all $v\in V$ and $G$ is $l$-paintable, then $G$ is t-paintable.

The \emph{online list chromatic number }of $G$ is the least $t$ such that $G$

is $t$-paintable, and is denoted by $\ensuremath{\ch^{\mathrm{OL}}(G)}$. Evidently,

$\ch^{\mathrm{OL}}(G)\geq\ch(G)$. Zhu conjectured that the gap $\ch^{\mathrm{OL}}(G)-\ch(G)$

can be arbitrarily large. However there are only a few known examples with this gap

equal to one, and none with larger gap. This conjecture is explored in this thesis.

One of the obstacles is that there are not many graphs whose exact list coloring

number is known. This is one of the motivations for establishing new cases of Erd\H{o}s'

problem. Here new examples of graphs with gap one are found, and related technical

results are developed as tools for attacking Zhu's conjecture.

The square $G^{2}$ of a graph $G$ is formed by adding edges between all vertices

at distance $2$. It was conjectured that every graph $G$ satisfies $\chi(G^{2})=\ch(G^{2})$.

This was recently disproved for specially constructed graphs. Here it is shown that

a graph arising naturally in the theory of cellular networks is also a counterexample.
Date Created
2015
Agent

On tiling directed graphs with cycles and tournaments

152048-Thumbnail Image.png
Description
A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices

A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or an $H$-factor. A goal of this study is to extend theorems on sufficient minimum degree conditions for perfect tilings in graphs to directed graphs. Corrádi and Hajnal proved that every graph $G$ on $3k$ vertices with minimum degree $delta(G)ge2k$ has a $K_3$-factor, where $K_s$ is the complete graph on $s$ vertices. The following theorem extends this result to directed graphs: If $D$ is a directed graph on $3k$ vertices with minimum total degree $delta(D)ge4k-1$ then $D$ can be partitioned into $k$ parts each of size $3$ so that all of parts contain a transitive triangle and $k-1$ of the parts also contain a cyclic triangle. The total degree of a vertex $v$ is the sum of $d^-(v)$ the in-degree and $d^+(v)$ the out-degree of $v$. Note that both orientations of $C_3$ are considered: the transitive triangle and the cyclic triangle. The theorem is best possible in that there are digraphs that meet the minimum degree requirement but have no cyclic triangle factor. The possibility of added a connectivity requirement to ensure a cycle triangle factor is also explored. Hajnal and Szemerédi proved that if $G$ is a graph on $sk$ vertices and $delta(G)ge(s-1)k$ then $G$ contains a $K_s$-factor. As a possible extension of this celebrated theorem to directed graphs it is proved that if $D$ is a directed graph on $sk$ vertices with $delta(D)ge2(s-1)k-1$ then $D$ contains $k$ disjoint transitive tournaments on $s$ vertices. We also discuss tiling directed graph with other tournaments. This study also explores minimum total degree conditions for perfect directed cycle tilings and sufficient semi-degree conditions for a directed graph to contain an anti-directed Hamilton cycle. The semi-degree of a vertex $v$ is $min{d^+(v), d^-(v)}$ and an anti-directed Hamilton cycle is a spanning cycle in which no pair of consecutive edges form a directed path.
Date Created
2013
Agent

Coloring graphs from almost maximum degree sized palettes

151578-Thumbnail Image.png
Description
Every graph can be colored with one more color than its maximum degree. A well-known theorem of Brooks gives the precise conditions under which a graph can be colored with maximum degree colors. It is natural to ask for the

Every graph can be colored with one more color than its maximum degree. A well-known theorem of Brooks gives the precise conditions under which a graph can be colored with maximum degree colors. It is natural to ask for the required conditions on a graph to color with one less color than the maximum degree; in 1977 Borodin and Kostochka conjectured a solution for graphs with maximum degree at least 9: as long as the graph doesn't contain a maximum-degree-sized clique, it can be colored with one fewer than the maximum degree colors. This study attacks the conjecture on multiple fronts. The first technique is an extension of a vertex shuffling procedure of Catlin and is used to prove the conjecture for graphs with edgeless high vertex subgraphs. This general approach also bears more theoretical fruit. The second technique is an extension of a method Kostochka used to reduce the Borodin-Kostochka conjecture to the maximum degree 9 case. Results on the existence of independent transversals are used to find an independent set intersecting every maximum clique in a graph. The third technique uses list coloring results to exclude induced subgraphs in a counterexample to the conjecture. The classification of such excludable graphs that decompose as the join of two graphs is the backbone of many of the results presented here. The fourth technique uses the structure theorem for quasi-line graphs of Chudnovsky and Seymour in concert with the third technique to prove the Borodin-Kostochka conjecture for claw-free graphs. The fifth technique adds edges to proper induced subgraphs of a minimum counterexample to gain control over the colorings produced by minimality. The sixth technique adapts a recoloring technique originally developed for strong coloring by Haxell and by Aharoni, Berger and Ziv to general coloring. Using this recoloring technique, the Borodin-Kostochka conjectured is proved for graphs where every vertex is in a large clique. The final technique is naive probabilistic coloring as employed by Reed in the proof of the Borodin-Kostochka conjecture for large maximum degree. The technique is adapted to prove the Borodin-Kostochka conjecture for list coloring for large maximum degree.
Date Created
2013
Agent