Chemical Engineering of Pasta
Description
Pasta is a staple food for many people and understanding how the process of making it at a homemade level and industrial level should be examined. Pasta is a large and growing market due to growing populations and new products, therefore, researching the pasta has many benefits. The goal of the research is to determine a consistent way to make homemade pasta and compare it to the industrial method. The comparisons that will be examined are the costs and the process to make the pasta. From there it can be determined where homemade pasta can fit in the market. Through experimentation, an optimal ratio of 1.65 grams of flour to 1 gram of egg was found to create pasta dough that would consistently make pasta easy to work with. Different methods of storage were tested to find a viable method to store fresh pasta. It was found that storing the pasta in an enclosed bag with a condensed shape in the freezer was the best method because it created the most durable pasta out of all the trials and it could be cooked. The industrial method for making pasta differed in some aspects to the homemade pasta method. The biggest changes were the use of an extruder and a drying machine which makes it easier to mass produce uniform pasta. The cost per kilogram based off ingredient prices to make homemade pasta was 0.92 dollars while the industrial pasta cost 0.89 dollars per kilogram. The biggest changes in cost comes from the method of storage of homemade pasta. It was determined that following the drying process of the industrial method would be best because then the price difference is dependent on the price of ingredients. This led to multiple possibilities where homemade pasta could enter the market, for example, as a part of premade meals. Overall, it is possible to create a better quality pasta that can be supplied to a wide arrange of demographics.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019-12
Agent
- Author (aut): Kupres, Matthew David
- Thesis director: Taylor, David
- Committee member: Schoepf, Jared
- Contributor (ctb): Economics Program in CLAS
- Contributor (ctb): Chemical Engineering Program
- Contributor (ctb): Barrett, The Honors College