Detailed Analysis of Liquid Ligament Breakup

161968-Thumbnail Image.png
Description
Multiphase flows are relevant to various industrial processes and are also a ubiquitous feature of nature. Atomization is a Gas-Liquid class of multiphase flow in which the liquid bulk disintegrates into a spectrum of drops. The final drop size distribution

Multiphase flows are relevant to various industrial processes and are also a ubiquitous feature of nature. Atomization is a Gas-Liquid class of multiphase flow in which the liquid bulk disintegrates into a spectrum of drops. The final drop size distribution of fragmenting liquids is important and is crucial to quantifying the performance of atomizers. This thesis implements two models of ligament breakup. The first model provides a method to determine the droplet size distribution of fragmenting ligaments. The second model provides a relation between ligament stretching, aspect ratio and dimensionless properties like Ohnesorge and Weber numbers for ligaments being stretched by aerodynamic force. The first model by Villermaux et.al considers a ligament as a linear succession of liquid blobs which undergo continuous interplay during destabilization. The evolution of their size distribution ultimately rules the droplet size distribution which follow a gamma distribution [14]. The results show that the Direct Numerical Simulations (DNS) of ligaments with different perturbations fragmented into very few drops and cannot be used to confirm that they follow the predicted gamma distribution. The second model considers a ligament breakup due to Rayleigh-Plateau Instability and provides an equation for ligament stretching. Through test runs the proportionality constant in the equation is determined by a least square fit. The theoretical number of drops is compared with the number of drops resulting from the Direct Numerical Simulation of ligament with a sinusoidal perturbation. It is found that the wavelength of the initial perturbation does not determine the number of drops obtained by ligament breakup
Date Created
2021
Agent

Identifying Liquid Structures Based on Length Scales & Quantifying Them Using a Sphere Model

161953-Thumbnail Image.png
Description
Identifying and tracking the location of the fluid interface is a fundamental aspect of multiphase flows. The Volume of Fluid (VOF) and Level Set methods are widely used to track the interface accurately. Analyzing the liquid structures such as sheets,

Identifying and tracking the location of the fluid interface is a fundamental aspect of multiphase flows. The Volume of Fluid (VOF) and Level Set methods are widely used to track the interface accurately. Analyzing the liquid structures such as sheets, ligaments, and droplets helps understand the flow physics and fluid breakup mechanism, aids in predicting droplet formation, improves atomization modeling and spray combustion. The thesis focuses on developing a new method to identify these liquid structures and devise a sphere model for droplet size prediction by augmenting concepts of linear algebra, rigid body dynamics, computational fluid mechanics, scientific computing, and visualization. The first part of the thesis presents a new approach to classify the fluid structures based on their length scales along their principal axes. This approach provides a smooth tracking of the structures' generation history instead of relying on high-speed video imaging of the experiment. A droplet is observed to have three equal length scales, while a ligament has one and a sheet has two significantly larger length scales. The subsequent breakup of ligaments and droplets depends on the atomizer geometry, operating conditions, and fluid physical properties. While it's straightforward to apply DNS and estimate this breakup, it is proven to be computationally expensive. The second part of the thesis deals with developing a sphere model that would essentially reduce this computational cost. After identifying a liquid structure, the sphere model utilizes the level set data in the domain to quantify the structure using spheres. By using the evolution information of these spheres as they separate from each other, the subsequent droplet size distribution can be evaluated.
Date Created
2021
Agent

Multiphysics Simulations with Spectral Element Methods: Conjugate Heat Transfer, Fluid-Structure Interaction, and Acoustics

161883-Thumbnail Image.png
Description
Realistic engineering, physical and biological systems are very complex in nature, and their response and performance are governed by multitude of interacting processes. In computational modeling of these systems, the interactive response is most often ignored, and simplifications are made

Realistic engineering, physical and biological systems are very complex in nature, and their response and performance are governed by multitude of interacting processes. In computational modeling of these systems, the interactive response is most often ignored, and simplifications are made to model one or a few relevant phenomena as opposed to a complete set of interacting processes due to a complexity of integrative analysis. In this thesis, I will develop new high-order computational approaches that reduce the amount of simplifications and model the full response of a complex system by accounting for the interaction between different physical processes as required for an accurate description of the global system behavior. Specifically, I will develop multi-physics coupling techniques based on spectral-element methods for the simulations of such systems. I focus on three specific applications: fluid-structure interaction, conjugate heat transfer, and modeling of acoustic wave propagation in non-uniform media. Fluid-structure interaction illustrates a complex system between a fluid and a solid, where a movable and deformable structure is surrounded by fluid flow, and its deformation caused by fluid affects the fluid flow interactively. To simulate this system, two coupling schemes are developed: 1) iterative implicit coupling, and 2) explicit coupling based on Robin-Neumann boundary conditions. A comprehensive verification strategy of the developed methodology is presented, including a comparison with benchmark flow solutions, h-, p- and temporal refinement studies. Simulation of a turbulent flow in a channel interacting with a compliant wall is attempted as well. Another problem I consider is when a solid is stationary, but a heat transfer occurs on the fluid-solid interface. To model this problem, a conjugate heat transfer framework is introduced. Validation of the framework, as well as studies of an interior thermal environment in a building regulated by an HVAC system with an on/off control model with precooling and multi-zone precooling strategies are presented. The final part of this thesis is devoted to modeling an interaction of acoustic waves with the fluid flow. The development of a spectral-element methodology for solution of Lighthill’s equation, and its application to a problem of leak detection in water pipes is presented.
Date Created
2021
Agent

Dynamics and Predictability of Large-Scale Atmospheric Waves

161644-Thumbnail Image.png
Description
Large amplitude westward propagating long waves in midlatitudes of Northern Hemisphere occasionally sustain coherent phase propagation over multiple weeks. Owing to the large amplitude and the life cycle of these waves previous studies have speculated their influence on extended-range weather

Large amplitude westward propagating long waves in midlatitudes of Northern Hemisphere occasionally sustain coherent phase propagation over multiple weeks. Owing to the large amplitude and the life cycle of these waves previous studies have speculated their influence on extended-range weather forecasts but have not quantified them. The primary aim of this study is to establish an updated long-term catalog of Retrograde events which can then be used to investigate the statistics and structure of these waves. Guided by the newly created catalog the dynamics of these waves are further explored. A preliminary look into the dynamics of these waves reveal a sequence of poleward extrusion, westward migration and vortex shedding occurring frequently during certain strong Retrograde wave events. A strong connection between the westward moving low PV structures and the East Asian cold air outbreak is uncovered. Also, the initiation of the sequence of low PV extrusion and vortex shedding is found to be linked with the phase of propagating Wave-1 zonal component. Enhanced predictability of global midlatitude Geopotential Height at 500mb is noted during active period of strong Retrograde wave activity in comparison to inactive period. Skilled forecasts were produced almost (on an average) 12 days in advance during the active period of one of the winters (1995/96) as compared to 9 days during the inactive period of the season.
Date Created
2021
Agent

Modernization of a Vortex-Lattice Method with Aircraft Design Applications

161518-Thumbnail Image.png
Description
The Vortex-lattice method has been utilized throughout history to both design and analyze the aerodynamic performance characteristics of flight vehicles. There are numerous different programs utilizing this method, each of which has its own set of assumptions and performance limitations.

The Vortex-lattice method has been utilized throughout history to both design and analyze the aerodynamic performance characteristics of flight vehicles. There are numerous different programs utilizing this method, each of which has its own set of assumptions and performance limitations. This thesis highlights VORLAX, one such solver, and details its historic and modernized performance characteristics through a series of code improvements and optimizations. With VORLAX, rapid synthesis and verification of aircraft performance data related to wing pressure distributions, stability and control, and Federal Regulation compliance can be quickly and accurately obtained. As such, VORLAX represents a class of efficient yet largely forgotten computational techniques that allow users to explore numerous design solutions in a fraction of the time that would be needed to use more complex, full-fledged engineering tools. In the age of modern computers, one hypothesis is that VORLAX and similar “lean” computational fluid dynamics (CFD) solvers have preferential performance characteristics relative to expensive, volume grid CFD suites, such as ANSYS Fluent. By utilizing these types of programs, tasks such as pre- and post-processing become trivially simple with basic scripting languages such as Visual Basic for Applications or Python. Thus, lean engineering programs and methodologies deserve their place in modern engineering, despite their wrongfully decreasing prevalence.
Date Created
2021
Agent

A Study and Design of Multi-Element High Lift Systems for Commercial Transport Aircraft

161444-Thumbnail Image.png
Description
The design and development process of high-lift systems for commercial transport aircraft has been historically heavily dependent on extensive experimental testing. Whether this testing be in wind tunnels or during aircraft testing, the number and extent of high-lift system variations

The design and development process of high-lift systems for commercial transport aircraft has been historically heavily dependent on extensive experimental testing. Whether this testing be in wind tunnels or during aircraft testing, the number and extent of high-lift system variations that can be tested are limited. With technology advancements, analyzing the complex flow around high lift systems using detailed computational fluid dynamics (CFD) has become more common; but, CFD has limitations due to the computational costs for such analysis. An empirical approach can be taken to analyze such systems, but the insight gained from such methods is often limited to a main contributing factor. While these methods often produce reasonable solutions, they fail in showing, and many times overshadow, the important minor effects within complex systems. This thesis aims to present insight on the need and design of multi-element high-lift systems by using a tool developed which utilizes a legacy vortex lattice potential flow code and methods described in classical aerodynamic literature. With this tool, numerous variations of high lift devices were studied to understand why commercial transport aircraft require a high-lift system. Furthermore, variations of complete high-lift systems were also studied to understand why certain design decisions were made on existing commercial transport aircraft. Ultimately, enough insight was obtained to proceed to design a functioning high-lift system for a commercial transport aircraft capable of meeting all established requirements and exhibit favorable flow separation conditions.
Date Created
2021
Agent

Validating a New CFD Algorithm by Finding the Drag Coefficient of a Sphere

148437-Thumbnail Image.png
Description

A novel CFD algorithm called LEAP is currently being developed by the Kasbaoui Research Group (KRG) using the Immersed Boundary Method (IBM) to describe complex geometries. To validate the algorithm, this research project focused on testing the algorithm in three

A novel CFD algorithm called LEAP is currently being developed by the Kasbaoui Research Group (KRG) using the Immersed Boundary Method (IBM) to describe complex geometries. To validate the algorithm, this research project focused on testing the algorithm in three dimensions by simulating a sphere placed in a moving fluid. The simulation results were compared against the experimentally derived Schiller-Naumann Correlation. Over the course of 36 trials, various spatial and temporal resolutions were tested at specific Reynolds numbers between 10 and 300. It was observed that numerical errors decreased with increasing spatial and temporal resolution. This result was expected as increased resolution should give results closer to experimental values. Having shown the accuracy and robustness of this method, KRG will continue to develop this algorithm to explore more complex geometries such as aircraft engines or human lungs.

Date Created
2021-05
Agent

3D Printed Gas Dynamic Virtual Nozzles for X-Ray Laser Sample Deliveryand Optical Characterization of Microjets and Microdroplets

158887-Thumbnail Image.png
Description
Gas Dynamic Virtual Nozzles (GDVN) produce microscopic flow-focused liquid jets and are widely used for sample delivery in serial femtosecond crystallography (SFX) and time-resolved solution scattering. Recently, 2-photon polymerization (2PP) made it possible to produce 3D-printed GDVNs with submicron printing

Gas Dynamic Virtual Nozzles (GDVN) produce microscopic flow-focused liquid jets and are widely used for sample delivery in serial femtosecond crystallography (SFX) and time-resolved solution scattering. Recently, 2-photon polymerization (2PP) made it possible to produce 3D-printed GDVNs with submicron printing resolution. Comparing with hand- fabricated nozzles, reproducibility, and less developing effort, and similarity of the performance of different 3D printed nozzles are among the advantages of using 3D printing techniques to develop GDVN’s. Submicron printing resolution also makes it possible to easily improve GDVN performance by optimizing the design of nozzles. In this study, 3D printed nozzles were developed to achieve low liquid and gas flow rates and high liquid jet velocities. A double-pulsed nanosecond laser imaging system was used to perform Particle Tracking Velocimetry (PTV) in order to determine jet velocities and assess jet stability/reproducibility. The testing results of pure water jets focused with He sheath gas showed that some designs can easily achieve stable liquid jets with velocities of more than 80 m/s, with pure water flowing at 3 microliters/min, and helium sheath gas flowing at less than 5 mg/min respectively. A numerical simulation pipeline was also used to characterize the performance of different 3D printed GDVNs. The results highlight the potential of making reproducible GDVNs with minimum fabrication effort, that can meet the requirements of present and future SFX and time-resolved solution scattering research.
Date Created
2020
Agent

Fundamentals of Soft, Stretchable Heat Exchanger Design

158822-Thumbnail Image.png
Description
Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far,

Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by the low thermal conductivity of materials with suitable mechanical properties. The recent introduction of liquid-metal embedded elastomers by Bartlett et al1 has addressed this need. Specifically, by remaining soft and stretchable despite the addition of filler, these thermally conductive composites provide an ideal material for the new class of “soft thermal systems”, which is introduced in this work. Understanding such thermal systems will be a key element in enabling technology that require high levels of stretchability, such as thermoregulatory garments, soft electronics, wearable electronics, and high-powered robotics. Shape change inherent to SHX operation has the potential to violate many conventional assumptions used in HX design and thus requires the development of new theoretical approaches to predict performance. To create a basis for understanding these devices, this work highlights two sequential studies. First, the effects of transitioning to a surface deformable, SHX under steady state static conditions in the setting of a liquid cooling device for thermoregulation, electronics and robotics applications was explored. In this study, a thermomechanical model was built and validated to predict the thermal performance and a system wide analysis to optimize such devices was carried out. Second, from a more fundamental perspective, the effects of SHXs undergoing transient shape deformation during operation was explored. A phase shift phenomenon in cooling performance dependent on stretch rate, stretch extent and thermal diffusivity was discovered and explained. With the use of a time scale analysis, the extent of quasi-static assumption viability in modeling such systems was quantified and multiple shape modulation regime limits were defined. Finally, nuance considerations and future work of using liquid metal-silicone composites in SHXs were discussed.
Date Created
2020
Agent

Accuracy and Computational Stability of Tensorally-Correct Subgrid Stress and Scalar Flux Representations in Autonomic Closure of LES

158804-Thumbnail Image.png
Description
Autonomic closure is a recently-proposed subgrid closure methodology for large eddy simulation (LES) that replaces the prescribed subgrid models used in traditional LES closure with highly generalized representations of subgrid terms and solution of a local system identification problem that

Autonomic closure is a recently-proposed subgrid closure methodology for large eddy simulation (LES) that replaces the prescribed subgrid models used in traditional LES closure with highly generalized representations of subgrid terms and solution of a local system identification problem that allows the simulation itself to determine the local relation between each subgrid term and the resolved variables at every point and time. The present study demonstrates, for the first time, practical LES based on fully dynamic implementation of autonomic closure for the subgrid stress and the subgrid scalar flux. It leverages the inherent computational efficiency of tensorally-correct generalized representations in terms of parametric quantities, and uses the fundamental representation theory of Smith (1971) to develop complete and minimal tensorally-correct representations for the subgrid stress and scalar flux. It then assesses the accuracy of these representations via a priori tests, and compares with the corresponding accuracy from nonparametric representations and from traditional prescribed subgrid models. It then assesses the computational stability of autonomic closure with these tensorally-correct parametric representations, via forward simulations with a high-order pseudo-spectral code, including the extent to which any added stabilization is needed to ensure computational stability, and compares with the added stabilization needed in traditional closure with prescribed subgrid models. Further, it conducts a posteriori tests based on forward simulations of turbulent conserved scalar mixing with the same pseudo-spectral code, in which velocity and scalar statistics from autonomic closure with these representations are compared with corresponding statistics from traditional closure using prescribed models, and with corresponding statistics of filtered fields from direct numerical simulation (DNS). These comparisons show substantially greater accuracy from autonomic closure than from traditional closure. This study demonstrates that fully dynamic autonomic closure is a practical approach for LES that requires accuracy even at the smallest resolved scales.
Date Created
2020
Agent