LYFE: Learning Your Formed Experiences

Description

In this thesis, I explored the interconnected ways in which human experience can shape and be shaped by environments of the future, such as interactive environments and spaces, embedded with sensors, enlivened by advanced algorithms for sensor data processing. I

In this thesis, I explored the interconnected ways in which human experience can shape and be shaped by environments of the future, such as interactive environments and spaces, embedded with sensors, enlivened by advanced algorithms for sensor data processing. I have developed an abstract representational experience into the vast and continual journey through life that shapes how we can use sensory immersion. The experimental work was housed in the iStage: an advanced black box space in the School of Arts, Media, and Engineering, which consists of video cameras, motion capture systems, spatial audio systems, and controllable lighting and projector systems. The malleable and interactive space of the iStage transformed into a reflective tool in which to gain insight into the overall shared, but very individual, emotional odyssey. Additionally, I surveyed participants after engaging in the experience to better understand their perceptions and interpretations of the experience. With the responses of participants' experiences and collective reflection upon the project I can begin to think about future iterations and how they might contain applications in health and/or wellness.

Date Created
2022-05
Agent

Computationally Efficient Object Detection Strategy from Water Surfaces with Specularity Removal

162001-Thumbnail Image.png
Description
Floating trash objects are very commonly seen on water bodies such as lakes, canals and rivers. With the increase of plastic goods and human activities near the water bodies, these trash objects can pile up and cause great harm to

Floating trash objects are very commonly seen on water bodies such as lakes, canals and rivers. With the increase of plastic goods and human activities near the water bodies, these trash objects can pile up and cause great harm to the surrounding environment. Using human workers to clear out these trash is a hazardous and time-consuming task. Employing autonomous robots for these tasks is a better approach since it is more efficient and faster than humans. However, for a robot to clean the trash objects, a good detection algorithm is required. Real-time object detection on water surfaces is a challenging issue due to nature of the environment and the volatility of the water surface. In addition to this, running an object detection algorithm on an on-board processor of a robot limits the amount of CPU consumption that the algorithm can utilize. In this thesis, a computationally low cost object detection approach for robust detection of trash objects that was run on an on-board processor of a multirotor is presented. To account for specular reflections on the water surface, we use a polarization filter and integrate a specularity removal algorithm on our approach as well. The challenges faced during testing and the means taken to eliminate those challenges are also discussed. The algorithm was compared with two other object detectors using 4 different metrics. The testing was carried out using videos of 5 different objects collected at different illumination conditions over a lake using a multirotor. The results indicate that our algorithm is much suitable to be employed in real-time since it had the highest processing speed of 21 FPS, the lowest CPU consumption of 37.5\% and considerably high precision and recall values in detecting the object.
Date Created
2021
Agent

Solving SPDEs for Multi-Dimensional Shape Analysis

161945-Thumbnail Image.png
Description
Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken

Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand, the outer surface along with its enclosed internal volume can be taken as a three-dimensional embedding of interests. Most studies focus on the surface-based perspective by leveraging the intrinsic features on the tangent plane. But a two-dimensional model may fail to fully represent the realistic properties of shapes with both intrinsic and extrinsic properties. In this thesis, severalStochastic Partial Differential Equations (SPDEs) are thoroughly investigated and several methods are originated from these SPDEs to try to solve the problem of both two-dimensional and three-dimensional shape analyses. The unique physical meanings of these SPDEs inspired the findings of features, shape descriptors, metrics, and kernels in this series of works. Initially, the data generation of high-dimensional shapes, here, the tetrahedral meshes, is introduced. The cerebral cortex is taken as the study target and an automatic pipeline of generating the gray matter tetrahedral mesh is introduced. Then, a discretized Laplace-Beltrami operator (LBO) and a Hamiltonian operator (HO) in tetrahedral domain with Finite Element Method (FEM) are derived. Two high-dimensional shape descriptors are defined based on the solution of the heat equation and Schrödinger’s equation. Considering the fact that high-dimensional shape models usually contain massive redundancies, and the demands on effective landmarks in many applications, a Gaussian process landmarking on tetrahedral meshes is further studied. A SIWKS-based metric space is used to define a geometry-aware Gaussian process. The study of the periodic potential diffusion process further inspired the idea of a new kernel call the geometry-aware convolutional kernel. A series of Bayesian learning methods are then introduced to tackle the problem of shape retrieval and classification. Experiments of every single item are demonstrated. From the popular SPDE such as the heat equation and Schrödinger’s equation to the general potential diffusion equation and the specific periodic potential diffusion equation, it clearly shows that classical SPDEs play an important role in discovering new features, metrics, shape descriptors and kernels. I hope this thesis could be an example of using interdisciplinary knowledge to solve problems.
Date Created
2021
Agent

Deep Hierarchical Reconstruction for Open-Set Recognition

161804-Thumbnail Image.png
Description
The field of Computer Vision has seen great accomplishments in the last decade due to the advancements in Deep Learning. With the advent of Convolutional Neural Networks, the task of image classification has achieved unimaginable success when perceived through

The field of Computer Vision has seen great accomplishments in the last decade due to the advancements in Deep Learning. With the advent of Convolutional Neural Networks, the task of image classification has achieved unimaginable success when perceived through the traditional Computer Vision lens. With that being said, the state-of-the-art results in the image classification task were produced under a closed set assumption i.e. the input samples and the target datasets have knowledge of class labels in the testing phase. When any real-world scenario is considered, the model encounters unknown instances in the data. The task of identifying these unknown instances is called Open-Set Classification. This dissertation talks about the detection of unknown classes and the classification of the known classes. The problem is approached by using a neural network architecture called Deep Hierarchical Reconstruction Nets (DHRNets). It is dealt with by leveraging the reconstruction part of the DHRNets to identify the known class labels from the data. Experiments were also conducted on Convolutional Neural Networks (CNN) on the basis of softmax probability, Autoencoders on the basis of reconstruction loss, and Mahalanobis distance on CNN's to approach this problem.
Date Created
2021
Agent

Learning in Compressed Domains

161270-Thumbnail Image.png
Description
A massive volume of data is generated at an unprecedented rate in the information age. The growth of data significantly exceeds the computing and storage capacities of the existing digital infrastructure. In the past decade, many methods are invented for

A massive volume of data is generated at an unprecedented rate in the information age. The growth of data significantly exceeds the computing and storage capacities of the existing digital infrastructure. In the past decade, many methods are invented for data compression, compressive sensing and reconstruction, and compressed learning (learning directly upon compressed data) to overcome the data-explosion challenge. While prior works are predominantly model-based, focus on small models, and not suitable for task-oriented sensing or hardware acceleration, the number of available models for compression-related tasks has escalated by orders of magnitude in the past decade. Motivated by this significant growth and the success of big data, this dissertation proposes to revolutionize both the compressive sensing reconstruction (CSR) and compressed learning (CL) methods from the data-driven perspective. In this dissertation, a series of topics on data-driven CSR are discussed. Individual data-driven models are proposed for the CSR of bio-signals, images, and videos with improved compression ratio and recovery fidelity trade-off. Specifically, a scalable Laplacian pyramid reconstructive adversarial network (LAPRAN) is proposed for single-image CSR. LAPRAN progressively reconstructs images following the concept of the Laplacian pyramid through the concatenation of multiple reconstructive adversarial networks (RANs). For the CSR of videos, CSVideoNet is proposed to improve the spatial-temporal resolution of reconstructed videos. Apart from CSR, data-driven CL is discussed in the dissertation. A CL framework is proposed to extract features directly from compressed data for image classification, objection detection, and semantic/instance segmentation. Besides, the spectral bias of neural networks is analyzed from the frequency perspective, leading to a learning-based frequency selection method for identifying the trivial frequency components which can be removed without accuracy loss. Compared with the conventional spatial downsampling approaches, the proposed frequency-domain learning method can achieve higher accuracy with reduced input data size. The methodologies proposed in this dissertation are not restricted to the above-mentioned applications. The dissertation also discusses other potential applications and directions for future research.
Date Created
2021
Agent

Characterizing the Performance of Machine Learning Algorithms: A Study and Novel Techniques

161220-Thumbnail Image.png
Description

Classification in machine learning is quite crucial to solve many problems that the world is presented with today. Therefore, it is key to understand one’s problem and develop an efficient model to achieve a solution. One technique to achieve greater

Classification in machine learning is quite crucial to solve many problems that the world is presented with today. Therefore, it is key to understand one’s problem and develop an efficient model to achieve a solution. One technique to achieve greater model selection and thus further ease in problem solving is estimation of the Bayes Error Rate. This paper provides the development and analysis of two methods used to estimate the Bayes Error Rate on a given set of data to evaluate performance. The first method takes a “global” approach, looking at the data as a whole, and the second is more “local”—partitioning the data at the outset and then building up to a Bayes Error Estimation of the whole. It is found that one of the methods provides an accurate estimation of the true Bayes Error Rate when the dataset is at high dimension, while the other method provides accurate estimation at large sample size. This second conclusion, in particular, can have significant ramifications on “big data” problems, as one would be able to clarify the distribution with an accurate estimation of the Bayes Error Rate by using this method.

Date Created
2021-12
Agent

Wearable Device Activity Classification With Machine Learning and a Custom Web Application

Description

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with the help of massive amounts of useful data. These classification models can accurately classify activities with the time-series data from accelerometers and gyroscopes. A significant way to improve the accuracy of these machine learning models is preprocessing the data, essentially augmenting data to make the identification of each activity, or class, easier for the model. <br/>On this topic, this paper explains the design of SigNorm, a new web application which lets users conveniently transform time-series data and view the effects of those transformations in a code-free, browser-based user interface. The second and final section explains my take on a human activity recognition problem, which involves comparing a preprocessed dataset to an un-augmented one, and comparing the differences in accuracy using a one-dimensional convolutional neural network to make classifications.

Date Created
2021-05
Agent

Image Restoration for Non-Traditional Camera Systems

158896-Thumbnail Image.png
Description
Cameras have become commonplace with wide-ranging applications of phone photography, computer vision, and medical imaging. With a growing need to reduce size and costs while maintaining image quality, the need to look past traditional style of cameras is becoming more

Cameras have become commonplace with wide-ranging applications of phone photography, computer vision, and medical imaging. With a growing need to reduce size and costs while maintaining image quality, the need to look past traditional style of cameras is becoming more apparent. Several non-traditional cameras have shown to be promising options for size-constraint applications, and while they may offer several advantages, they also usually are limited by image quality degradation due to optical or a need to reconstruct a captured image. In this thesis, we take a look at three of these non-traditional cameras: a pinhole camera, a diffusion-mask lensless camera, and an under-display camera (UDC).

For each of these cases, I present a feasible image restoration pipeline to correct for their particular limitations. For the pinhole camera, I present an early pipeline to allow for practical pinhole photography by reducing noise levels caused by low-light imaging, enhancing exposure levels, and sharpening the blur caused by the pinhole. For lensless cameras, we explore a neural network architecture that performs joint image reconstruction and point spread function (PSF) estimation to robustly recover images captured with multiple PSFs from different cameras. Using adversarial learning, this approach achieves improved reconstruction results that do not require explicit knowledge of the PSF at test-time and shows an added improvement in the reconstruction model’s ability to generalize to variations in the camera’s PSF. This allows lensless cameras to be utilized in a wider range of applications that require multiple cameras without the need to explicitly train a separate model for each new camera. For UDCs, we utilize a multi-stage approach to correct for low light transmission, blur, and haze. This pipeline uses a PyNET deep neural network architecture to perform a majority of the restoration, while additionally using a traditional optimization approach which is then fused in a learned manner in the second stage to improve high-frequency features. I show results from this novel fusion approach that is on-par with the state of the art.
Date Created
2020
Agent

Nurturing Open Design: Challenges and Opportunities for HCI to Support Crowd-driven Hardware Design

158890-Thumbnail Image.png
Description
Open Design is a crowd-driven global ecosystem which tries to challenge and alter contemporary modes of capitalistic hardware production. It strives to build on the collective skills, expertise and efforts of people regardless of their educational, social or political backgrounds

Open Design is a crowd-driven global ecosystem which tries to challenge and alter contemporary modes of capitalistic hardware production. It strives to build on the collective skills, expertise and efforts of people regardless of their educational, social or political backgrounds to develop and disseminate physical products, machines and systems. In contrast to capitalistic hardware production, Open Design practitioners publicly share design files, blueprints and knowhow through various channels including internet platforms and in-person workshops. These designs are typically replicated, modified, improved and reshared by individuals and groups who are broadly referred to as ‘makers’.

This dissertation aims to expand the current scope of Open Design within human-computer interaction (HCI) research through a long-term exploration of Open Design’s socio-technical processes. I examine Open Design from three perspectives: the functional—materials, tools, and platforms that enable crowd-driven open hardware production, the critical—materially-oriented engagements within open design as a site for sociotechnical discourse, and the speculative—crowd-driven critical envisioning of future hardware.

More specifically, this dissertation first explores the growing global scene of Open Design through a long-term ethnographic study of the open science hardware (OScH) movement, a genre of Open Design. This long-term study of OScH provides a focal point for HCI to deeply understand Open Design's growing global landscape. Second, it examines the application of Critical Making within Open Design through an OScH workshop with designers, engineers, artists and makers from local communities. This work foregrounds the role of HCI researchers as facilitators of collaborative critical engagements within Open Design. Third, this dissertation introduces the concept of crowd-driven Design Fiction through the development of a publicly accessible online Design Fiction platform named Dream Drones. Through a six month long development and a study with drone related practitioners, it offers several pragmatic insights into the challenges and opportunities for crowd-driven Design Fiction. Through these explorations, I highlight the broader implications and novel research pathways for HCI to shape and be shaped by the global Open Design movement.
Date Created
2020
Agent

Computational Challenges in Non-parametric Prediction of Bradycardia in Preterm Infants

158864-Thumbnail Image.png
Description
Infants born before 37 weeks of pregnancy are considered to be preterm. Typically, preterm infants have to be strictly monitored since they are highly susceptible to health problems like hypoxemia (low blood oxygen level), apnea, respiratory issues, cardiac problems, neurological

Infants born before 37 weeks of pregnancy are considered to be preterm. Typically, preterm infants have to be strictly monitored since they are highly susceptible to health problems like hypoxemia (low blood oxygen level), apnea, respiratory issues, cardiac problems, neurological problems as well as an increased chance of long-term health issues such as cerebral palsy, asthma and sudden infant death syndrome. One of the leading health complications in preterm infants is bradycardia - which is defined as the slower than expected heart rate, generally beating lower than 60 beats per minute. Bradycardia is often accompanied by low oxygen levels and can cause additional long term health problems in the premature infant.The implementation of a non-parametric method to predict the onset of brady- cardia is presented. This method assumes no prior knowledge of the data and uses kernel density estimation to predict the future onset of bradycardia events. The data is preprocessed, and then analyzed to detect the peaks in the ECG signals, following which different kernels are implemented to estimate the shared underlying distribu- tion of the data. The performance of the algorithm is evaluated using various metrics and the computational challenges and methods to overcome them are also discussed.
It is observed that the performance of the algorithm with regards to the kernels used are consistent with the theoretical performance of the kernel as presented in a previous work. The theoretical approach has also been automated in this work and the various implementation challenges have been addressed.
Date Created
2020
Agent