A Review of the Metabolic and Physiological Effects of the Mitochondrial-Derived Peptide MOTS-c

Description

Our current understanding of the mitochondrial genome was revolutionized in 2015 with the discovery of short open reading frames (sORFs) that produced protein products called mitochondrial-derived peptides (MDPs). Interestingly, unlike other proteins produced by the organelle, these MDPs are not

Our current understanding of the mitochondrial genome was revolutionized in 2015 with the discovery of short open reading frames (sORFs) that produced protein products called mitochondrial-derived peptides (MDPs). Interestingly, unlike other proteins produced by the organelle, these MDPs are not directly involved in the electron transport chain but rather serve the role of metabolic regulators. In particular, one of these peptides called MOTS-c has been shown to regulate glucose and fat metabolism in an AMPK-dependent manner. With its capacity to enter the mitochondria and impact gene expression, MOTS-c has also displayed the ability to increase aerobic exercise performance by triggering elevated synthesis of the HO-1 antioxidant. Overall these findings position MOTS-c as a promising treatment for metabolic diseases as well as a potential dietary supplement to boost ATP availability.

Date Created
2023-05
Agent

Adaptation Podcast: The Physiological Adaptation to Isolation

Description
The purpose of this project was to discuss the physiological effects of isolation on the human body and how the body adapts. Through reviewing stories and studies of social and perceptual isolation, the adaptations of the human mind are detailed.

The purpose of this project was to discuss the physiological effects of isolation on the human body and how the body adapts. Through reviewing stories and studies of social and perceptual isolation, the adaptations of the human mind are detailed. This project explores the experiences of prisoners, sensory deprivation tanks, cave explorations, as well as studies involving monkeys and carpenter ants. The adaptations witnessed include hallucinations, increased mortality, anxiety, agitation, altered sense of time, delayed response, and lowered blood pressure. Knowing the factors surrounding the isolation experience is crucial to understand the presenting adaptation methods. These factors include duration, voluntary or involuntary participation, mental strength, and the restriction level of the isolation.

DISCLAIMER: Due to the unexpected COVID-19 pandemic, the attached podcast is a draft recording in lieu of the final recording
Date Created
2020-05
Agent

Physiological Feats of the Body: How We Adapt to Anaerobic Stress Podcast

Description
****Project Disclaimer: Unfortunately due to the COVID-19 outbreak during Spring 2020, ASU shut down in-person classes and campus facilities as means to prevent the spread of the virus. This meant though that a polished final podcast recording was unable to

****Project Disclaimer: Unfortunately due to the COVID-19 outbreak during Spring 2020, ASU shut down in-person classes and campus facilities as means to prevent the spread of the virus. This meant though that a polished final podcast recording was unable to be made. Instead, a first-run, practice podcast recording that was recorded before the shut down is uploaded in its stead as a reference as to how the final was intended to sound and be produced. ****


Cellular hypertrophy is an anaerobically-based, adaptive process that mammalian skeletal muscle undergoes in response to damage resulting from unaccustomed force generation by the muscle. Hypertrophy allows for the muscle tissue to recover from the immediate injury and also to be rebuilt more capable of withstanding producing the same amount of force without injury, should it happen again. This means the end result of an adapted muscle is an overall more efficient tissue. The ability to regenerate after damage to the structure and function of the muscle tissue is a highly orchestrated event involving multiple steps and key events to occur. Most briefly, a mechanical load is attempted to be lifted but due to demanding a high amount of contractile force to lift, it causes microdamage to the structural and contractile elements of muscle fiber’s sarcomeres. In addition to an inflammatory response, satellite cells, as a part of a myogenic response, are activated to invade the fiber and then permanently reside inside to produce new proteins that will replace the damaged and necrotized proteins. This addition of cellular content, repeated over multiple times, results in the increased diameter of the fibers and manifests in the visual appearance of skeletal muscle hypertrophy. These steps have been listed off devoid of the contexts in which it takes for these to occur and will be addressed within this thesis.
Date Created
2020-05
Agent

Human Physiological Adaptations to Starvation and Caloric Restriction

Description
Throughout history humans have had to adapt to changing conditions in order to survive. Food shortages are one of the major pressures that have shaped past populations. Because of this, the human body has many physiological adaptations that allow

Throughout history humans have had to adapt to changing conditions in order to survive. Food shortages are one of the major pressures that have shaped past populations. Because of this, the human body has many physiological adaptations that allow it to go extended periods of time consuming little to no food. These adaptations also allow the body to recover quickly once food becomes available. They include changes in metabolism that allow different fuel sources to be used for energy, the storing of excess energy absorbed from food in the forms of glycogen and fat to be used in between meals, and a reduction in the basal metabolic rate in response to starvation, as well as physiological changes in the small intestines. Even in places where starvation is not a concern today, these adaptations are still important as they also have an effect on weight gain and dieting in addition to promoting survival when the body is in a starved state.

Disclaimer: The initial goal of this project was to present this information as a podcast episode as a part of a series aimed at teaching the general public about human physiological adaptations. Due to the circumstances with COVID-19 we were unable to meet to make a final recording of the podcast episode. A recording of a practice session recorded earlier in the year has been uploaded instead and is therefore only a rough draft.
Date Created
2020-05
Agent

Physiological Adaptations to Blindness: Current Review of How Human Senses Are Impacted Upon the Onset of Blindness

Description
The goal of this paper is to describe the current understanding of how a human’s remaining senses are affected by the onset of blindness through physiological adaptations. The main focuses of this paper stem around the brain and how it

The goal of this paper is to describe the current understanding of how a human’s remaining senses are affected by the onset of blindness through physiological adaptations. The main focuses of this paper stem around the brain and how it adapts to blindness through mechanisms such as neuroplasticity. This paper will explore the increased acuity of both tactile and auditory processing as well as spatial navigation resulting from the onset of blindness. This paper will also explore the enhanced ability of the blind to echolocate as well as the mechanisms of homeostasis that underlie this ability. Finally, this paper will report on the lack of enhancement for the senses of taste and smell in humans after the onset of blindness and possible reasons why there are no observed increases in potential. It is the hope of the writers that this paper will cover the current state of knowledge on the phenomenon of adaptations resulting from the onset of blindness to such an extent that this information can be presented in a podcast format later on.

Disclaimer: Due to the COVID-19 global pandemic, the final outcomes of this project were impacted and limited. Therefore, the rough draft practice podcast session has been uploaded to accompany the written thesis portion as final recordings could not be recorded at this time.
Date Created
2020-05
Agent

The Effects of Applying Active Based Learning on Student's Cognitive Function

132447-Thumbnail Image.png
Description
The purpose of this study was to develop proposal lesson plans for 4th-6th graders based on active learning to integrate movement physical activity into the curriculum. The 4th-6th graders were chosen, as this is the age where teaching typically transitions

The purpose of this study was to develop proposal lesson plans for 4th-6th graders based on active learning to integrate movement physical activity into the curriculum. The 4th-6th graders were chosen, as this is the age where teaching typically transitions from active learning to sedentary/lecture style teaching. Research compiled indicated positive effects of active based learning on children such as increased attention span, retention, and general focus. A survey was created to not only assess the perception of active versus didactic learners, but to also assess the effects of movement-based learning on the variables that research claimed to change. The lesson plans developed here should be transferable to a classroom lesson to evaluate the hypothesized results.
Date Created
2019-05
Agent

Examination of an Organometallic Complex on Insulin Resistance in Periadolescent Male Rats Following a 10-week High Fat Diet

133166-Thumbnail Image.png
Description
With the rising prevalence of obesity and diabetes, novel treatments to help mitigate or prevent symptoms of these conditions are warranted. Prior studies have shown that fossilized plant materials found in soil lowers blood sugar in a mouse model of

With the rising prevalence of obesity and diabetes, novel treatments to help mitigate or prevent symptoms of these conditions are warranted. Prior studies have shown that fossilized plant materials found in soil lowers blood sugar in a mouse model of diabetes. The goal of this study is to determine whether a similar organometallic complex (OMC) could prevent insulin resistance in the skeletal muscle brought on by chronic high fat intake by examining the protein expression of key enzymes in the insulin signaling pathway and examining glucoregulatory measures. Six-week-old periadolescent male Sprague-Dawley rats (n=42) were randomly chosen to be fed either a high fat diet (HFD) (20% protein, 20% carbohydrates [6.8% sucrose], 60% fat) or a standard chow diet (18.9% protein, 57.33% carbohydrates, 5% fat) for 10 weeks. Rats from each diet group were then randomly assigned to one of three doses of OMC (0, 0.6, 3.0 mg/mL), which was added to their drinking water and fasting blood glucose was measured at baseline and again at 10 weeks. After 10 weeks, rats were euthanized, and soleus muscle samples were isolated, snap-frozen, and stored at -80°C until analyses. Fasting plasma glucose was measured using a commercially available glucose oxidase kit. Following 6 and 10 weeks, HFD rats developed significant hyperglycemia (p<0.001 and p=0.025) compared to chow controls which was prevented by high dose OMC (p=0.021). After 10 weeks, there were significant differences in fasting serum insulin between diets (p=0.009) where levels were higher in HFD rats. No significant difference was seen in p-PI3K expression between groups. These results suggest that OMC could prevent insulin resistance by reducing hyperglycemia. Further studies are needed to characterize the effects of diet and OMC on the insulin signaling pathway in skeletal muscle, the main site of postprandial glucose disposal. This study was supported by a grant from Isagenix International LLC as well as funds from Barrett, the Honors College at Arizona State University, Tempe Campus.
Date Created
2018-12
Agent