Mars at No Charge: Active Neutron Spectroscopy for Magma Evolution, Clay Hydration, and Amorphous Composition in Gale Crater, Mars

190701-Thumbnail Image.png
Description
Neutron spectroscopy is used to determine bulk water abundances in the near surface of planetary bodies. The Dynamic Albedo of Neutrons (DAN) instrument on the Mars Science Laboratory (MSL) rover, Curiosity, is able to determine the depth distribution of water

Neutron spectroscopy is used to determine bulk water abundances in the near surface of planetary bodies. The Dynamic Albedo of Neutrons (DAN) instrument on the Mars Science Laboratory (MSL) rover, Curiosity, is able to determine the depth distribution of water and neutron absorbers in the top ~50 cm of the subsurface. In this dissertation, I focus on answering significant geologic questions by interpreting DAN results in the geologic context provided by other MSL and orbital datasets. This approach enabled me to investigate significant outstanding questions in Gale crater geology, with implications for the evolution and habitability of Mars.I mapped an extensive silicic volcaniclastic layer in the subsurface, the first identified and mapped on Mars. This layer served as a silica source for other silica-rich features. But unlike those features, this layer contains abundant rhyolitic glass, indicating an evolved volcanic origin. Similar material on Earth is produced by plate tectonics, so this layer has important implications for the evolution of Mars, which has no evidence of plate tectonics. One of the primary motivations for exploring Gale crater is a distinct clay mineral signature from orbital data of the Compact Reconnaissance Imaging Spectrometer at Mars (CRISM), which has also identified a corresponding hydration signature. I compared DAN and CRISM hydration results and found that CRISM hydration results are biased by the presence of regolith, indicating that this regolith is either more hydrated or has a different grain size texture than bedrock. Clay minerals are primary binding sites for organics on Earth, and most organic-mineral binding mechanisms involve either water or hydroxyl. This makes hydrated clays the most efficient hosts for organic preservation, but clays are normally dehydrated when measured by MSL. However, my DAN-derived water abundances are greater in the most clay-rich unit of Gale crater, suggesting that clay minerals may be hydrated in the subsurface. I developed a new amorphous component analysis method that simultaneously constrains clay mineral hydration and abundances of various hydrated amorphous phases. I found a strong correlation between “excess” water and smectites (expandable clay minerals), indicating that these clay minerals are hydrated in the subsurface.
Date Created
2023
Agent

Modeling Volatiles at the Lunar Poles

131222-Thumbnail Image.png
Description
The lunar poles have hydrated materials in their permanently shadowed regions (PSRs), also known as lunar cold traps. These cold traps exist because of the Moon’s slight tilt of 1.5, which consequently creates these PSRs. In these shadows, the temperature

The lunar poles have hydrated materials in their permanently shadowed regions (PSRs), also known as lunar cold traps. These cold traps exist because of the Moon’s slight tilt of 1.5, which consequently creates these PSRs. In these shadows, the temperature remains cold enough to prevent the sublimation of volatile materials for timescales spanning that of geologic times [Hayne et. al 2015]. PSRs are significant because they create an environment where water ice can exist within the first meter of regolith at the lunar poles, where many cold traps are present. These volatile materials can be observed through a process called neutron spectroscopy. Neutron spectroscopy is a method of observing the neutron interactions caused by galactic and extragalactic cosmic ray proton collisions. Neutron interactions are more sensitive to hydrogen than other elements found in the regolith, and thus are a good indicator of hydrated materials. Using neutron spectroscopy, it is possible to detect the hydrogen in these cold traps up to a meter deep in the regolith, thus detecting the presence of hydrated materials, water, or ice.
For this study, we used the Monte Carlo Neutral Particle Transport Code (MCNP6) to create a homogenous sphere that represented the PSRs on Moon, and then modeled five differing water contents for the lunar regolith ranging from 0-20 percent weight. These percent weights were modeled after the estimates for Shackleton crater, data from Lunar Reconnaissance Orbiter (LRO) mission, and data from Lunar Orbiter Laser Altimeter (LOLA).
This study was created with the LunaH-Map mission as motivation, seeking to exhibit what neutron data might be observed. The LunaH-Map mission is an array of mini-Neutron Spectrometers that will orbit the Moon 8-20 km away from the lunar surface and map the spatial
distribution of hydrogen at the lunar poles. The plots generated show the relationship between neutron flux and energy from the surface of the Moon as well as from 10km away. This data provides insight into the benefits of collecting orbital data versus surface data, as well as illustrating what LunaH-Map might observe within a PSR.
Date Created
2020-05
Agent