The Making of a COVID Lab Report

163900-Thumbnail Image.png
Description

This Project Report documents the accomplishments of an extraordinary group of students, faculty, and staff at the Arizona state University, who participated in a year-long, multidisciplinary, first-of-its-kind academic endeavor entitled “The Making of a COVID Lab.” The lab that is

This Project Report documents the accomplishments of an extraordinary group of students, faculty, and staff at the Arizona state University, who participated in a year-long, multidisciplinary, first-of-its-kind academic endeavor entitled “The Making of a COVID Lab.” The lab that is the focus of this project is the ASU Biodesign Clinical Testing Laboratory, known simply as the ABCTL.

Date Created
2021
Agent

The Making of ASU Biodesign Clinical Testing Laboratory (ABCTL): Information Technology

147542-Thumbnail Image.png
Description

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020, this virus's deadly nature has required clinical testing to meet 2020's demands of higher throughput, higher accuracy and higher efficiency. Information technology has allowed institutions,

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020, this virus's deadly nature has required clinical testing to meet 2020's demands of higher throughput, higher accuracy and higher efficiency. Information technology has allowed institutions, like Arizona State University (ASU), to make strategic and operational changes to combat the SARS-CoV-2 pandemic. At ASU, information technology was one of the six facets identified in the ongoing review of the ASU Biodesign Clinical Testing Laboratory (ABCTL) among business, communications, management/training, law, and clinical analysis. The first chapter of this manuscript covers the background of clinical laboratory automation and details the automated laboratory workflow to perform ABCTL’s COVID-19 diagnostic testing. The second chapter discusses the usability and efficiency of key information technology systems of the ABCTL. The third chapter explains the role of quality control and data management within ABCTL’s use of information technology. The fourth chapter highlights the importance of data modeling and 10 best practices when responding to future public health emergencies.

Date Created
2021-05
Agent

The Making of ASU Biodesign Clinical Testing Laboratory (ABCTL): Information Technology

147552-Thumbnail Image.png
Description

This project is designed as part of the multi-student ASU Biodesign Clinical Testing Laboratory (ABCTL) thesis project sponsored and organized by Dr. Carolyn Compton, professor of Life Sciences at ASU and medical director with the ABCTL. This project divides students

This project is designed as part of the multi-student ASU Biodesign Clinical Testing Laboratory (ABCTL) thesis project sponsored and organized by Dr. Carolyn Compton, professor of Life Sciences at ASU and medical director with the ABCTL. This project divides students into teams with Business, Law, Laboratory, IT, and Documentary focused groups, with the goal of providing a comprehensive overview of the operations of the ABCTL as a reference for other institutions and to produce a documentary film about the laboratory. As a member of the IT team, this writeup will focus on quality control throughout the transfer of data in the testing process, security and privacy of data, HIPAA and regulatory compliance, and accessibility of data while maintaining such restrictions.

Date Created
2021-05
Agent

The Future of Biological Big Data

147642-Thumbnail Image.png
Description

In recent years, biological research and clinical healthcare has been disrupted by the ability to retrieve vast amounts of information pertaining to an organism’s health and biological systems. From increasingly accessible wearables collecting realtime biometric data to cutting-edge high throughput

In recent years, biological research and clinical healthcare has been disrupted by the ability to retrieve vast amounts of information pertaining to an organism’s health and biological systems. From increasingly accessible wearables collecting realtime biometric data to cutting-edge high throughput biological sequencing methodologies providing snapshots of an organism’s molecular profile, biological data is rapidly increasing in its prevalence. As more biological data continues to be harvested, artificial intelligence and machine learning are well positioned to aid in leveraging this big data for breakthrough scientific outcomes and revolutionized medical care. <br/><br/>The coming decade’s intersection between biology and computational science will be ripe with opportunities to utilize biological big data to advance human health and mitigate disease. Standardization, aggregation and centralization of this biological data will be critical to drawing novel scientific insights that will lead to a more robust understanding of disease etiology and therapeutic avenues. Future development of cheaper, more accessible molecular sensing technology, in conjunction with the emergence of more precise wearables, will pave the road to a truly personalized and preventative healthcare system. However, with these vast opportunities come significant threats. As biological big data advances, privacy and security concerns may hinder society's adoption of these technologies and subsequently dampen the positive impacts this information can have on society. Moreover, the openness of biological data serves as a national security threat given that this data can be used to identify medical vulnerabilities in a population, highlighting the dual-use implications of biological big data. <br/><br/>Additional factors to be considered by academia, private industry, and defense include the ongoing relationship between science and society at-large, as well as the political and social dimensions surrounding the public’s trust in science. Organizations that seek to contribute to the future of biological big data must also remain vigilant to equity, representation and bias in their data sets and data processing techniques. Finally, the positive impacts of biological big data lie on the foundation of responsible innovation, as these emerging technologies do not operate in standalone fashion but rather form a complex ecosystem.

Date Created
2021-05
Agent

The Making of ASU Biodesign Clinical Testing Laboratory (ABCTL): Information Technology

147677-Thumbnail Image.png
Description

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020, this virus's deadly nature has required clinical testing to meet 2020's demands of higher throughput, higher accuracy and higher efficiency. Information technology has allowed institutions,

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020, this virus's deadly nature has required clinical testing to meet 2020's demands of higher throughput, higher accuracy and higher efficiency. Information technology has allowed institutions, like Arizona State University (ASU), to make strategic and operational changes to combat the SARS-CoV-2 pandemic. At ASU, information technology was one of the six facets identified in the ongoing review of the ASU Biodesign Clinical Testing Laboratory (ABCTL) among business, communications, management/training, law, and clinical analysis. The first chapter of this manuscript covers the background of clinical laboratory automation and details the automated laboratory workflow to perform ABCTL’s COVID-19 diagnostic testing. The second chapter discusses the usability and efficiency of key information technology systems of the ABCTL. The third chapter explains the role of quality control and data management within ABCTL’s use of information technology. The fourth chapter highlights the importance of data modeling and 10 best practices when responding to future public health emergencies.

Date Created
2021-05
Agent

The Making of ASU Biodesign Clinical Testing Laboratory (ABCTL): Information Technology

147796-Thumbnail Image.png
Description

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020,<br/>this virus's deadly nature has required clinical testing to meet 2020's demands of higher<br/>throughput, higher accuracy and higher efficiency. Information technology has allowed<br/>institutions, like Arizona State

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020,<br/>this virus's deadly nature has required clinical testing to meet 2020's demands of higher<br/>throughput, higher accuracy and higher efficiency. Information technology has allowed<br/>institutions, like Arizona State University (ASU), to make strategic and operational changes to<br/>combat the SARS-CoV-2 pandemic. At ASU, information technology was one of the six facets<br/>identified in the ongoing review of the ASU Biodesign Clinical Testing Laboratory (ABCTL)<br/>among business, communications, management/training, law, and clinical analysis. The first<br/>chapter of this manuscript covers the background of clinical laboratory automation and details<br/>the automated laboratory workflow to perform ABCTL’s COVID-19 diagnostic testing. The<br/>second chapter discusses the usability and efficiency of key information technology systems of<br/>the ABCTL. The third chapter explains the role of quality control and data management within<br/>ABCTL’s use of information technology. The fourth chapter highlights the importance of data<br/>modeling and 10 best practices when responding to future public health emergencies.

Date Created
2021-05
Agent

Drug Repurposing Identifies Potential Therapeutic Opportunity for Huntington’s Disease

131118-Thumbnail Image.png
Description
In the past decade, the volume, variety, and velocity of amassed data relevant to healthcare have reached staggering levels. This data has come in the form of numerous sources such as electronic health records, genome sequencing, pharmaceutical research. This recent

In the past decade, the volume, variety, and velocity of amassed data relevant to healthcare have reached staggering levels. This data has come in the form of numerous sources such as electronic health records, genome sequencing, pharmaceutical research. This recent rise of big data in healthcare has enabled the rise of new healthcare research methods. One of these emerging methods is known as drug repositioning (also commonly known as drug repurposing) and is the process of finding new clinical applications for existing FDA-approved drugs that have previously been approved for a different indication (Naveja et al., 2016). This process often leverages big data sources containing information about specific drugs and diseases and utilizes specialized algorithms and bioinformatics techniques to find unknown connections between certain drugs and diseases.
The traditional drug discovery process often amasses substantial costs, faces high attrition rates, progress at an extremely slow pace, and has no guarantee of receiving FDA approval by the end of the process. On average, the total cost and timeframe of drug discovery are $2.6 billion and at least 10 years (PhRMA, 2015). Alternatively, drug repositioning has become an increasingly attractive approach to pharmaceutical development and drug discovery because it has the potential to circumvent these obstacles by utilizing “de-risked” FDA-approved compounds, employing lower-cost computational research methods, and necessitating shorter development timelines (Pushpakom et al, 2019). Used effectively, drug repositioning can save a lot of money, time, and lives.
One potential application of drug repositioning research is in neurodegenerative diseases, which are diseases that primarily affect neurons in the brain. Many of these diseases manifest themselves through complex mechanisms that can impair memory, cognition, and movement. Huntington’s Disease (HD) is a fatal genetic progressive neurodegenerative disease that causes the progressive breakdown of neurons in the brain. This disease is caused by a trinucleotide repeat disorder known as a CAG repeat. This means that, due to a mutation in a person’s DNA, a set of code in the DNA erroneously repeats itself an excessive number of times. These mutations lead to the production of deformed, highly reactive proteins that can cause neuronal dysfunction, degeneration, and death. The number of repetitions varies from person to person, and longer repeat chains tend to cause the onset of HD to occur earlier in life. Symptoms include loss in motor function, personality and behavioral changes, decline in cognitive function, severe weight loss, and suicidal ideation (Heemskerk and Roos, 2012). One unique facet of the disease is that symptoms generally do not begin to appear until ages 30-50 and worsen over the course of a 10-25-year period. HD is also an autosomal dominant hereditary disease, meaning that any parent who is a carrier of the genetic disorder has a 50% chance or higher of passing the gene to his/her child. The high transmission rate, coupled with the prolonged symptoms of the disease, makes HD a devastating disease for families, as individuals are often unaware of their HD disease until after they have already had offspring. Currently, there are approximately 30,000 symptomatic HD patients and more than 200,000 individuals at risk for developing HD. The disease is also significantly more frequent in Western countries. There is no known cure for the disease, and the only focus of treatment is managing symptoms.
The goal of this Honors Thesis project is to utilize basic drug repositioning methods to develop a disease profile for HD and curate a set of drugs that can be tested and validated for HD treatment in future experiments.
Date Created
2020-05
Agent