Spatio-Temporal Methods for Analysis of Implications of Natural Hazard Risk

190981-Thumbnail Image.png
Description
As the impacts of climate change worsen in the coming decades, natural hazards are expected to increase in frequency and intensity, leading to increased loss and risk to human livelihood. The spatio-temporal statistical approaches developed and applied in this dissertation

As the impacts of climate change worsen in the coming decades, natural hazards are expected to increase in frequency and intensity, leading to increased loss and risk to human livelihood. The spatio-temporal statistical approaches developed and applied in this dissertation highlight the ways in which hazard data can be leveraged to understand loss trends, build forecasts, and study societal impacts of losses. Specifically, this work makes use of the Spatial Hazard Events and Losses Database which is an unparalleled source of loss data for the United States. The first portion of this dissertation develops accurate loss baselines that are crucial for mitigation planning, infrastructure investment, and risk communication. This is accomplished thorough a stationarity analysis of county level losses following a normalization procedure. A wide variety of studies employ loss data without addressing stationarity assumptions or the possibility for spurious regression. This work enables the statistically rigorous application of such loss time series to modeling applications. The second portion of this work develops a novel matrix variate dynamic factor model for spatio-temporal loss data stratified across multiple correlated hazards or perils. The developed model is employed to analyze and forecast losses from convective storms, which constitute some of the highest losses covered by insurers. Adopting factor-based approach, forecasts are achieved despite the complex and often unobserved underlying drivers of these losses. The developed methodology extends the literature on dynamic factor models to matrix variate time series. Specifically, a covariance structure is imposed that is well suited to spatio-temporal problems while significantly reducing model complexity. The model is fit via the EM algorithm and Kalman filter. The third and final part of this dissertation investigates the impact of compounding hazard events on state and regional migration in the United States. Any attempt to capture trends in climate related migration must account for the inherent uncertainties surrounding climate change, natural hazard occurrences, and socioeconomic factors. For this reason, I adopt a Bayesian modeling approach that enables the explicit estimation of the inherent uncertainty. This work can provide decision-makers with greater clarity regarding the extent of knowledge on climate trends.
Date Created
2023
Agent

On Stochastic Modeling Applications to Cybersecurity: Loss, Attack, and Detection

189358-Thumbnail Image.png
Description
The main objective of this work is to study novel stochastic modeling applications to cybersecurity aspects across three dimensions: Loss, attack, and detection. First, motivated by recent spatial stochastic models with cyber insurance applications, the first and second moments of

The main objective of this work is to study novel stochastic modeling applications to cybersecurity aspects across three dimensions: Loss, attack, and detection. First, motivated by recent spatial stochastic models with cyber insurance applications, the first and second moments of the size of a typical cluster of bond percolation on finite graphs are studied. More precisely, having a finite graph where edges are independently open with the same probability $p$ and a vertex $x$ chosen uniformly at random, the goal is to find the first and second moments of the number of vertices in the cluster of open edges containing $x$. Exact expressions for the first and second moments of the size distribution of a bond percolation cluster on essential building blocks of hybrid graphs: the ring, the path, the random star, and regular graphs are derived. Upper bounds for the moments are obtained by using a coupling argument to compare the percolation model with branching processes when the graph is the random rooted tree with a given offspring distribution and a given finite radius. Second, the Petri Net modeling framework for performance analysis is well established; extensions provide enough flexibility to examine the behavior of a permissioned blockchain platform in the context of an ongoing cyberattack via simulation. The relationship between system performance and cyberattack configuration is analyzed. The simulations vary the blockchain's parameters and network structure, revealing the factors that contribute positively or negatively to a Sybil attack through the performance impact of the system. Lastly, the denoising diffusion probabilistic models (DDPM) ability for synthetic tabular data augmentation is studied. DDPMs surpass generative adversarial networks in improving computer vision classification tasks and image generation, for example, stable diffusion. Recent research and open-source implementations point to a strong quality of synthetic tabular data generation for classification and regression tasks. Unfortunately, the present state of literature concerning tabular data augmentation with DDPM for classification is lacking. Further, cyber datasets commonly have highly unbalanced distributions complicating training. Synthetic tabular data augmentation is investigated with cyber datasets and performance of well-known metrics in machine learning classification tasks improve with augmentation and balancing.
Date Created
2023
Agent

A Digital Twin Based Approach to Optimize Reticle Management in Photolithography

187584-Thumbnail Image.png
Description
Photolithography is among the key phases in chip manufacturing. It is also among the most expensive with manufacturing equipment valued at the hundreds of millions of dollars. It is paramount that the process is run efficiently, guaranteeing high resource utilization

Photolithography is among the key phases in chip manufacturing. It is also among the most expensive with manufacturing equipment valued at the hundreds of millions of dollars. It is paramount that the process is run efficiently, guaranteeing high resource utilization and low product cycle times. A key element in the operation of a photolithography system is the effective management of the reticles that are responsible for the imprinting of the circuit path on the wafers. Managing reticles means determining which are appropriate to mount on the very expensive scanners as a function of the product types being released to the system. Given the importance of the problem, several heuristic policies have been developed in the industry practice in an attempt to guarantee that the expensive tools are never idle. However, such policies have difficulties reacting to unforeseen events (e.g., unplanned failures, unavailability of reticles). On the other hand, the technological advance of the semiconductor industry in sensing at system and process level should be harnessed to improve on these “expert policies”. In this thesis, a system for the real time reticle management is developed that not only is able to retrieve information from the real system, but also can embed commonly used policies to improve upon them. A new digital twin for the photolithography process is developed that efficiently and accurately predicts the system performance thus enabling predictions for the future behaviors as a function of possible decisions. The results demonstrate the validity of the developed model, and the feasibility of the overall approach demonstrating a statistically significant improvement of performance as compared to the current policy.
Date Created
2023
Agent

Game Theory and its Applications to Infrastructure Security: A Bibliometric Analysis

166171-Thumbnail Image.png
Description
Game theory, the mathematical study of mathematical models and simulations that often play out like a game, is applicable to a plethora of disciplines, one of which is infrastructure security. This is a rather new and niche subject area, and

Game theory, the mathematical study of mathematical models and simulations that often play out like a game, is applicable to a plethora of disciplines, one of which is infrastructure security. This is a rather new and niche subject area, and our aim is to perform a bibliographic analysis to analyze the thematic makeup of a selected body of publications in this area, as well as analyze trends in paper publication, journal contributions, country contributions, and trends in the authorship of the publications.
Date Created
2022-05
Agent

The Impact of Climate Change on Trends in Vector-Borne Diseases

130864-Thumbnail Image.png
Description
This thesis analyzes the implications of climate change for insect-borne diseases in humans, focusing especially on mosquitoes and ticks as the two most common vectors. I first introduce relevant background on climate change, arthropod vectors, and the diseases they carry,

This thesis analyzes the implications of climate change for insect-borne diseases in humans, focusing especially on mosquitoes and ticks as the two most common vectors. I first introduce relevant background on climate change, arthropod vectors, and the diseases they carry, and the significance of vector-borne diseases for human health. I report on current knowledge of spatial and temporal trends in most common mosquito and tick-borne diseases in the United States, with a detailed table provided in Appendix A. I then review how climatic variability is anticipated to cause profound changes in vector life cycles. In particular, the rise in global ambient temperatures is likely to be the primary driver of arthropod proliferation, although they are also sensitive to changes in humidity, carbon dioxide levels, and water levels. As regions warm, arthropods will be able to survive where they were not able to previously, potentially infecting more individuals. The incidence of several vector-borne diseases in the United States is predicted to increase in multiple states as climate change progresses. The World Health Organization predicts that in North America, Dengue Hemorrhagic Fever and Lyme disease will become the primary vector-borne diseases that are increasingly common (Githeko, et. al, 2000).
Date Created
2020-12
Agent

Spatial Mortality Modeling in Actuarial Science

158387-Thumbnail Image.png
Description
Modeling human survivorship is a core area of research within the actuarial com

munity. With life insurance policies and annuity products as dominant financial

instruments which depend on future mortality rates, there is a risk that observed

human mortality experiences will differ from

Modeling human survivorship is a core area of research within the actuarial com

munity. With life insurance policies and annuity products as dominant financial

instruments which depend on future mortality rates, there is a risk that observed

human mortality experiences will differ from projected when they are sold. From an

insurer’s portfolio perspective, to curb this risk, it is imperative that models of hu

man survivorship are constantly being updated and equipped to accurately gauge and

forecast mortality rates. At present, the majority of actuarial research in mortality

modeling involves factor-based approaches which operate at a global scale, placing

little attention on the determinants and interpretable risk factors of mortality, specif

ically from a spatial perspective. With an abundance of research being performed

in the field of spatial statistics and greater accessibility to localized mortality data,

there is a clear opportunity to extend the existing body of mortality literature to

wards the spatial domain. It is the objective of this dissertation to introduce these

new statistical approaches to equip the field of actuarial science to include geographic

space into the mortality modeling context.

First, this dissertation evaluates the underlying spatial patterns of mortality across

the United States, and introduces a spatial filtering methodology to generate latent

spatial patterns which capture the essence of these mortality rates in space. Second,

local modeling techniques are illustrated, and a multiscale geographically weighted

regression (MGWR) model is generated to describe the variation of mortality rates

across space in an interpretable manner which allows for the investigation of the

presence of spatial variability in the determinants of mortality. Third, techniques for

updating traditional mortality models are introduced, culminating in the development

of a model which addresses the relationship between space, economic growth, and

mortality. It is through these applications that this dissertation demonstrates the

utility in updating actuarial mortality models from a spatial perspective.
Date Created
2020
Agent