Image-level and group-level models for Drosophila gene expression pattern annotation

130364-Thumbnail Image.png
Description
Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for

Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
Date Created
2013-12-03
Agent

Transfer Learning for BioImaging and Bilingual Applications

154086-Thumbnail Image.png
Description
Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled

Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled data from one or multiple related sources with different distributions. Due to its capability of migrating knowledge from related domains, transfer learning has shown to be effective for cross-domain learning problems. In this dissertation, I carry out research along this direction with a particular focus on designing efficient and effective algorithms for BioImaging and Bilingual applications. Specifically, I propose deep transfer learning algorithms which combine transfer learning and deep learning to improve image annotation performance. Firstly, I propose to generate the deep features for the Drosophila embryo images via pretrained deep models and build linear classifiers on top of the deep features. Secondly, I propose to fine-tune the pretrained model with a small amount of labeled images. The time complexity and performance of deep transfer learning methodologies are investigated. Promising results have demonstrated the knowledge transfer ability of proposed deep transfer algorithms. Moreover, I propose a novel Robust Principal Component Analysis (RPCA) approach to process the noisy images in advance. In addition, I also present a two-stage re-weighting framework for general domain adaptation problems. The distribution of source domain is mapped towards the target domain in the first stage, and an adaptive learning model is proposed in the second stage to incorporate label information from the target domain if it is available. Then the proposed model is applied to tackle cross lingual spam detection problem at LinkedIn’s website. Our experimental results on real data demonstrate the efficiency and effectiveness of the proposed algorithms.
Date Created
2015
Agent